A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A022086 Fibonacci sequence beginning 0, 3.
0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165, 267, 432, 699, 1131, 1830, 2961, 4791, 7752, 12543, 20295, 32838, 53133, 85971, 139104, 225075, 364179, 589254, 953433, 1542687, 2496120, 4038807, 6534927, 10573734, 17108661, 27682395, 44791056, 72473451, 117264507
Offset: 0
Comments
First differences of A111314. - Ross La Haye, May 31 2006
Pisano period lengths: 1, 3, 1, 6, 20, 3, 16, 12, 8, 60, 10, 6, 28, 48, 20, 24, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
For n>=6, a(n) is the number of edge covers of the union of two cycles C_r and C_s, r+s=n, with a single common vertex. - Feryal Alayont, Oct 17 2024
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[3*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
-
Maple
BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L),BB(k)]: od: L; # Zerinvary Lajos, Mar 19 2007 with (combinat):seq(sum((fibonacci(n,1)),m=1..3),n=0..32); # Zerinvary Lajos, Jun 19 2008
-
Mathematica
LinearRecurrence[{1, 1}, {0, 3}, 40] (* Arkadiusz Wesolowski, Aug 17 2012 *) Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *) Table[3 Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Dec 31 2016 *)
-
PARI
a(n)=3*fibonacci(n) \\ Charles R Greathouse IV, Nov 06 2014
-
SageMath
def A022086(n): return 3*fibonacci(n) print([A022086(n) for n in range(41)]) # G. C. Greubel, Apr 10 2025
Formula
a(n) = 3*Fibonacci(n).
a(n) = F(n-2) + F(n+2) for n>1, with F=A000045.
a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+1,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 3*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = A187893(n) - 1. - Filip Zaludek, Oct 29 2016
E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Oct 29 2016
a(n) = F(n+4) + F(n-4) - 4*F(n), F = A000045. - Bruno Berselli, Dec 29 2016
A119457 Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.
1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1
Examples
Triangle begins as: 1; 2, 2; 3, 4, 3; 4, 6, 6, 5; 5, 8, 9, 10, 8; 6, 10, 12, 15, 16, 13; 7, 12, 15, 20, 24, 26, 21; 8, 14, 18, 25, 32, 39, 42, 34; 9, 16, 21, 30, 40, 52, 63, 68, 55; 10, 18, 24, 35, 48, 65, 84, 102, 110, 89; 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144; 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Fibonacci Number
Crossrefs
Main diagonal: A023607(n).
Columns: A000027(n) (k=1), A005843(n-1) (k=2), A008585(n-2) (k=3), A008587(n-3) (k=4), A008590(n-4) (k=5), A008595(n-5) (k=6), A008603(n-6) (k=7).
Programs
-
Magma
A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >; [A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
-
Mathematica
(* First program *) T[n_, 1] := n; T[n_ /; n > 1, 2] := 2 n - 2; T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *) (* Second program *) A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1]; Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
-
SageMath
def A119457(n,k): return (n-k+1)*fibonacci(k+1) print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025
Formula
T(n, k) = (n-k+1)*T(k,k) for 1 <= k < n, with T(n, n) = A000045(n+1).
From G. C. Greubel, Apr 15 2025: (Start)
T(n, k) = (n-k+1)*Fibonacci(k+1).
A126714 Dual Wythoff array read along antidiagonals.
1, 2, 4, 3, 6, 7, 5, 10, 11, 9, 8, 16, 18, 14, 12, 13, 26, 29, 23, 19, 15, 21, 42, 47, 37, 31, 24, 17, 34, 68, 76, 60, 50, 39, 27, 20, 55, 110, 123, 97, 81, 63, 44, 32, 22, 89, 178, 199, 157, 131, 102, 71, 52, 35, 25, 144, 288, 322, 254, 212, 165, 115, 84, 57, 40, 28
Offset: 1
Comments
The dual Wythoff array is the dispersion of the sequence w given by w(n)=2+floor(n*x), where x=(golden ratio), so that w=2+A000201(n). For a discussion of dispersions, see A191426. - Clark Kimberling, Jun 03 2011
Examples
Array starts 1 2 3 5 8 13 21 34 55 89 144 4 6 10 16 26 42 68 110 178 288 466 7 11 18 29 47 76 123 199 322 521 843 9 14 23 37 60 97 157 254 411 665 1076 12 19 31 50 81 131 212 343 555 898 1453 15 24 39 63 102 165 267 432 699 1131 1830 17 27 44 71 115 186 301 487 788 1275 2063 20 32 52 84 136 220 356 576 932 1508 2440 22 35 57 92 149 241 390 631 1021 1652 2673 25 40 65 105 170 275 445 720 1165 1885 3050 28 45 73 118 191 309 500 809 1309 2118 3427
References
- Clark Kimberling, "Stolarsky Interspersions," Ars Combinatoria 39 (1995) 129-138. See page 135 for the dual Wythoff array and other dual arrays. - Clark Kimberling, Oct 29 2009
Links
- P. Hegarty, U. Larsson, Permutations of the natural numbers with prescribed difference multisets, Electr. J. Combin. Numb. Theory 6 (2006) #A03.
Crossrefs
First three rows identical to A035506. First column is A007066. First row is A000045. 2nd row is essentially A006355. 3rd row is essentially A000032. 4th row essentially A000285. 5th row essentially A013655 or A001060. 6th row essentially A022086 or A097135. 7th row essentially A022120. 8th row essentially A022087. 9th row essentially A022130. 10th row essentially A022088. 11th row essentially A022095. 12th row essentially A022089 etc.
Cf. A035513 (Wythoff array).
Programs
-
Maple
Tn1 := proc(T,nmax,row) local n,r,c,fnd; n := 1; while true do fnd := false; for r from 1 to row do for c from 1 to nmax do if T[r,c] = n then fnd := true; fi; od; if T[r,nmax] < n then RETURN(-1); fi; od; if fnd then n := n+1; else RETURN(n); fi; od; end; Tn2 := proc(T,nmax,row,ai1) local n,r,c,fnd; for r from 1 to row do for c from 1 to nmax do if T[r,c]+1 = ai1 then RETURN(T[r,c+1]+1); fi; od; od; RETURN(-1); end; T := proc(nmax) local a,col,row; a := array(1..nmax,1..nmax); for col from 1 to nmax do a[1,col] := combinat[fibonacci](col+1); od; for row from 2 to nmax do a[row,1] := Tn1(a,nmax,row-1); a[row,2] := Tn2(a,nmax,row-1,a[row,1]); for col from 3 to nmax do a[row,col] := a[row,col-2]+a[row,col-1]; od; od; RETURN(a); end; nmax := 12; a := T(nmax); for d from 1 to nmax do for row from 1 to d do printf("%d, ",a[row,d-row+1]); od; od;
-
Mathematica
(* program generates the dispersion array T of the complement of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *) c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *) x = GoldenRatio; f[n_] := Floor[n*x + 2] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; (* the array T *) TableForm[Table[t[i, j], {i, 1, 10}, {j, 1,10}]] (* Dual Wythoff array, A126714 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* array as a sequence *) (* Program by Peter J. C. Moses, Jun 01 2011; added here by Clark Kimberling, Jun 03 2011 *)
A192958 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
1, -1, 3, 7, 17, 33, 61, 107, 183, 307, 509, 837, 1369, 2231, 3627, 5887, 9545, 15465, 25045, 40547, 65631, 106219, 171893, 278157, 450097, 728303, 1178451, 1906807, 3085313, 4992177, 8077549, 13069787, 21147399, 34217251, 55364717, 89582037
Offset: 0
Keywords
Comments
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 6*F(n+1)-(2*n+5)); # G. C. Greubel, Jul 12 2019
-
Magma
F:=Fibonacci; [6*F(n+1)-(2*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + n^2 - 2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192958 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192959 *) (* Second program *) With[{F=Fibonacci}, Table[6*F[n+1]-(2*n+5), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; 6*f(n+1)-(2*n+5)) \\ G. C. Greubel, Jul 12 2019
-
Sage
f=fibonacci; [6*f(n+1)-(2*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
From R. J. Mathar, May 09 2014: (Start)
G.f.: (1 -4*x +8*x^2 -3*x^3)/((1-x-x^2)*(1-x)^2).
a(n) - 2*a(n-1) +a(n-2) = A022089(n-3). (End)
a(n) = 6*Fibonacci(n+1) - (2*n+5). - G. C. Greubel, Jul 12 2019
A180251 Decimal expansion of 6*(phi+1)/5, where phi is (1 + sqrt(5))/2.
3, 1, 4, 1, 6, 4, 0, 7, 8, 6, 4, 9, 9, 8, 7, 3, 8, 1, 7, 8, 4, 5, 5, 0, 4, 2, 0, 1, 2, 3, 8, 7, 6, 5, 7, 4, 1, 2, 6, 4, 3, 7, 1, 0, 1, 5, 7, 6, 6, 9, 1, 5, 4, 3, 4, 5, 6, 2, 5, 3, 8, 3, 4, 7, 2, 4, 6, 3, 1, 2, 5, 5, 5, 3, 8, 2, 6, 8, 2, 9, 3, 9, 6, 4, 8, 6, 4, 8, 6, 4, 5, 0, 2, 7, 2, 6, 9, 3, 6, 4, 9, 8, 1, 7, 0, 4, 9, 0, 5, 6, 9, 0, 4, 6
Offset: 1
Comments
This is an approximation to Pi.
6*(phi+1)/5 is not equal to Pi, although some have claimed this (see Dudley). - Kellen Myers, Oct 04 2013
Examples
3.141640786499873817845504201238765741264371015766915434562538347246312555382...
References
- Underwood Dudley, Mathematical Cranks, MAA 1992, pp. 247, 292.
- Alfred S. Posamentier and Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, New York, Prometheus Books, 2007, p. 119.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Hung Viet Chu, Square the Circle in One Minute, arXiv:1908.01202 [math.GM], 2019.
- Futility Closet, A Surprise Visitor
Programs
-
Magma
(3/10)*(1 + Sqrt(5))^2; // G. C. Greubel, Jan 17 2018
-
Mathematica
RealDigits[(6/5)GoldenRatio^2, 10, 100][[1]] (* Alonso del Arte, Apr 09 2012 *)
-
PARI
3*(3+sqrt(5))/5 \\ Charles R Greathouse IV, Sep 13 2013
Formula
6*(phi + 1)/5 = 6*phi^2/5 = 3(3 + sqrt(5))/5 = 9/5 + sqrt(9/5). - Charles R Greathouse IV, Sep 13 2013
Equals 24/(5-sqrt(5))^2. - Joost Gielen, Sep 20 2013
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions