cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 183 results. Next

A269725 a(n) = row number of extended Wythoff array (see A035513) which contains the sequence n times the Fibonacci numbers 1,2,3,5,8,13,21,... .

Original entry on oeis.org

0, 2, 3, 4, 15, 18, 21, 24, 27, 30, 33, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 630, 651, 672, 693, 714, 735, 756, 777, 798, 819, 840, 861, 882, 903, 924, 945, 966, 987, 1008, 1029, 1050, 1071, 1092, 1113, 1134, 1155, 1176, 1197, 1218, 1239, 1260
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2016

Keywords

Examples

			Take n=5: 5 times 1,2,3,5,8,13,... gives 5,10,15,25,40,65,.., which is row 15 of the extended Wythoff array (when extended to the left), so a(5) = 15.
		

References

  • J. H. Conway, Posting to Math Fun Mailing List, Nov 25 1996.

Crossrefs

Programs

  • Maple
    A269725 := proc(n)
        local f,sl,r,c,wrks ;
        f := [seq(n*combinat[fibonacci](i),i=2..30)] ;
        for sl from 0 do
            for r from 1 do
                if A035513(r,1) = op(1+sl,f) then
                    wrks := true;
                    for c from 2 to 5 do
                        if A035513(r,c) <> op(c+sl,f) then
                            wrks := false;
                        end if;
                    end do:
                    if wrks then
                        print(n,f,r) ;
                        return r-1 ;
                    end if;
                elif A035513(r,1) > op(1+sl,f) then
                    break ;
                end if;
            end do:
        end do:
    end proc: # R. J. Mathar, May 06 2017
  • Mathematica
    W[n_, k_] := Fibonacci[k+1] Floor[n*GoldenRatio] + (n-1) Fibonacci[k];
    a[n_] := Module[{f, sl, r, c, wrks}, f = Table[n*Fibonacci[i], {i, 2, 30}]; For[sl = 0, True, sl++, For[r = 1, True, r++, Which[W[r, 1] == f[[1 + sl]], wrks = True; For[c = 2, c <= 5, c++, If[W[r, c] != f[[c+sl]], wrks = False]]; If[wrks, Return[r-1]], W[r, 1] > f[[1+sl]], Break[]]]]];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 13 2022, after R. J. Mathar *)

Formula

a(n) = A173027(n)-1. - R. J. Mathar, May 06 2017

A332938 Indices of the primitive rows of the Wythoff array (A035513); see Comments.

Original entry on oeis.org

1, 2, 6, 7, 8, 10, 11, 12, 14, 17, 18, 20, 21, 23, 24, 26, 27, 30, 32, 33, 36, 37, 38, 39, 40, 42, 44, 46, 48, 49, 50, 53, 54, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 79, 80, 81, 84, 85, 86, 88, 90, 92, 94, 95, 98, 100, 101, 102, 104, 107
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2020

Keywords

Comments

In a row of the Wythoff array, either every two consecutive terms are relatively prime or else no two consecutive terms are relatively prime. In the first case, we call the row primitive; otherwise, the row is an integer multiple of a tail of a preceding row. Conjectures: the maximal number of consecutive primitive rows is 5, and the limiting proportion of primitive rows exists and is approximately 0.608.

Examples

			The Wythoff array begins:
   1    2    3    5    8   13   21   34   55   89  144 ...
   4    7   11   18   29   47   76  123  199  322  521 ...
   6   10   16   26   42   68  110  178  288  466  754 ...
   9   15   24   39   63  102  165  267  432  699 1131 ...
  12   20   32   52   84  136  220  356  576  932 1508 ...
  14   23   37   60   97  157  254  411  665 1076 1741 ...
  17   28   45   73  118  191  309  500  809 1309 2118 ...
  19   31   50   81  131  212  343  555  898 1453 2351 ...
  22   36   58   94  152  246  398  644 1042 1686 2728 ...
Row 1: A000045 (Fibonacci numbers, a primitive row)
Row 2: A000032 (Lucas numbers, primitive)
Row 3: 2 times a tail of row 1
Row 4: 3 times a tail of row 1
Row 5  4 times a tail of row 1
Row 6:  essentially A000285, primitive
Row 7:  essentially A022095, primitive
Row 8:  essentially A013655, primitive
Row 9:  2 times a tail of row 2
Thus first five terms of (a(n)) are 1,2,6,7,8.
		

Crossrefs

Programs

  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; (* A035513 *)
    t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}]  (* A332937 *)
    Flatten[Position[t, 1]]  (* A332938 *)

A274288 Numbers that are a product of distinct numbers in row 4 of the Wythoff array, A035513.

Original entry on oeis.org

9, 15, 24, 39, 63, 102, 135, 165, 216, 267, 351, 360, 432, 567, 585, 699, 918, 936, 945, 1131, 1485, 1512, 1530, 1830, 2403, 2448, 2457, 2475, 2961, 3240, 3888, 3960, 3978, 4005, 4791, 5265, 6291, 6408, 6426, 6435, 6480, 7752, 8424, 8505, 10179, 10368, 10395
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			135 = 9*15, 3240 = 9*15*24.
		

Crossrefs

Programs

  • Mathematica
    f[1] = 9; f[2] = 15; z = 33; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s1 = Rest[s]

A361993 (2,1)-block array, B(2,1), of the Wythoff array (A035513), read by descending antidiagonals.

Original entry on oeis.org

5, 9, 15, 14, 25, 26, 23, 40, 43, 36, 37, 65, 69, 59, 47, 60, 105, 112, 95, 77, 57, 97, 170, 181, 154, 124, 93, 68, 157, 275, 293, 249, 201, 150, 111, 78, 254, 445, 474, 403, 325, 243, 179, 127, 89, 411, 720, 767, 652, 526, 393, 290, 205, 145, 99, 665, 1165
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2023

Keywords

Comments

We begin with a definition. Suppose that W = (w(i,j)), where i >= 1 and j >= 1, is an array of numbers such that if m and n satisfy 1 <= m < n, then there exists k such that w(m,k+h) < w(n,h+1) < w(m,k+h+1) for every h >= 0. Then W is a row-splitting array. The array B(2,1) is a row-splitting array. The rows of B(2,1) are linearly recurrent with signature (1,1); the columns are linearly recurrent with signature (1,1,-1). The order array (as defined in A333029) of B(2,1) is A361995.

Examples

			Corner of B(2,1):
   5    9   14   23   37   60   97  157 ...
  15   25   40   65  105  170  275  445 ...
  26   43   69  112  181  293  474  767 ...
  36   59   95  154  249  403  652 1055 ...
  47   77  124  202  325  526  851 1377 ...
  ...
(column 1 of A035513) = (1,4,6,9,12,14,17,19,...), so (column 1 of B(2,1)) = (5,15,26,36,...);
(column 2 of A000027) = (2,7,10,15,20,23,28,31,...), so (column 2 of B(2,1)) = (9,25,43,59,...).
		

Crossrefs

Cf. A000045, A001622, A035513, A080164, A361975, A361992 (array B(1,2)), A361994 (array B(2,2)).

Programs

  • Mathematica
    f[n_] := Fibonacci[n]; r = GoldenRatio;
    zz = 10; z = 13;
    w[n_, k_] := f[k + 1] Floor[n*r] + (n - 1) f[k]
    t[h_, k_] := w[2 h - 1, k] + w[2 h, k];
    Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A361993 sequence *)
    TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* A361993 array *)

Formula

B(2,1) = (b(i,j)), where b(i,j) = w(2i-1,j) + w(2i,j) for i >= 1, j >= 1, where (w(i,j)) is the Wythoff array (A035513).
b(i,j) = F(j+1) ([2 i r] + [(2 i - 1) r]) + (4 i - 3) F(j), where F = A000045, the Fibonacci numbers, and r = (1+sqrt(5))/2, the golden ratio, A001622, and [ ] = floor.

A144148 Weight array W={w(i,j)} of the Wythoff array A035513.

Original entry on oeis.org

1, 1, 3, 1, 2, 2, 2, 3, 1, 3, 3, 5, 2, 2, 3, 5, 8, 3, 3, 2, 2, 8, 13, 5, 5, 3, 1, 3, 13, 21, 8, 8, 5, 2, 2, 2, 21, 34, 13, 13, 8, 3, 3, 1, 3, 34, 55, 21, 21, 13, 5, 5, 2, 2, 3, 55, 89, 34, 34, 21, 8, 8, 3, 3, 2, 2, 89, 144, 55, 55, 34, 13, 13, 5, 5, 3, 1, 3, 144, 233, 89, 89, 55, 21, 21, 8, 8, 5, 2, 2, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 11 2008

Keywords

Comments

In general, let w(i,j) be the weight of the unit square labeled by its northeast vertex (i,j) and for each (m,n), define S(m,n) = Sum_{i=1..m} Sum_{j=1..n} w(i,j).
Then S(m,n) is the weight of the rectangle [0,m]x[0,n]. As in A144112, we call W the weight array of S, and S the accumulation array of W, which can be derived from S as follows:
(1) extend S by defining S(i,j)=0 if i=0 or j=0; and
(2) then w(m,n) = s(m,n) + s(m-n,n-1) - s(m,n-1) - s(n,m-1) for m>=1, n>=1.
For the case at hand, S is the Wythoff array, A035513. These arrays form a chain:
... ->A144148->A035513->A185737-> ... Every term of this array is a Fibonacci number.

Examples

			Corner:
    1  1  1  2  3   5   8  13  21  34   55   89
    3  2  3  5  8  13  21  34  55  89  144  233
    2  1  2  3  5   8  13  21  34  55   89  144
    3  2  3  5  8  13  21  34  55  89  144  233
    3  2  3  5  8  13  21  34  55  89  144  233
    2  1  2  3  5   8  13  21  34  55   89  144
    3  2  3  5  8  13  21  34  55  89  144  233
    2  1  2  3  5   8  13  21  34  55   89  144
    3  2  3  5  8  13  21  34  55  89  144  233
    3  2  3  5  8  13  21  34  55  89  144  233
    2  1  2  3  5   8  13  21  34  55   89  144
    3  2  3  5  8  13  21  34  55  89  144  233
		

Crossrefs

Programs

  • Mathematica
    s[n_, k_] := Fibonacci[k + 1]  Floor[n*GoldenRatio] + (n - 1)  Fibonacci[k];
    Grid[Table[s[n, k], {n, 1, 12}, {k, 1, 12}]]   (* A035513 *)
    s[0, k_] := 0; s[n_, 0] = 0;
    w[m_, n_] := s[m, n] + s[m - 1, n - 1] - s[m, n - 1] - s[m - 1, n];
    Grid[Table[w[n, k], {n, 1, 12}, {k, 1, 12}]] (* array *)
    Table[w[k, m - k], {m, 2, 14}, {k, 1, m - 1}] // Flatten (* sequence *)
  • PARI
    s(n, k) = if ((n<=0) || (k<=0), 0, (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k)); \\ A035513
    w(n, k) = s(n,k)+s(n-1,k-1)-s(n,k-1)-s(n-1,k); \\ Michel Marcus, Feb 02 2025

Formula

For m>3, if the row number is m of form floor(h*r+1), where r=(1+sqrt(5))/2, then
(row m)=(row 2); otherwise, (row m)=(row 3).
row n: (3,2,3,5,8,13,21,...) if n>1 is in the lower Wythoff sequence, A000201.
row n: (2,1,2,3,5,8,13,21,...) if n is in the upper Wythoff sequence, A001950.

Extensions

Corrected and extended by Michel Marcus, Feb 02 2025
Some of the content of the duplicate (and now dead) sequence A185736 has been merged into this entry. - N. J. A. Sloane, Feb 15 2025
Edited by Clark Kimberling, Feb 16 2025

A228040 Decimal expansion of sum of reciprocals, row 2 of Wythoff array, W = A035513.

Original entry on oeis.org

6, 2, 9, 5, 2, 4, 8, 3, 9, 8, 7, 6, 3, 1, 2, 4, 4, 9, 5, 3, 5, 4, 6, 1, 7, 9, 5, 3, 4, 1, 8, 5, 0, 1, 9, 3, 3, 1, 6, 2, 5, 9, 6, 8, 3, 8, 2, 8, 8, 8, 6, 0, 8, 7, 7, 9, 7, 3, 8, 1, 9, 0, 7, 0, 8, 3, 7, 2, 8, 2, 7, 4, 2, 1, 3, 1, 2, 7, 0, 4, 4, 6, 4, 5, 7, 0
Offset: 0

Views

Author

Clark Kimberling, Aug 05 2013

Keywords

Comments

Let c be the constant given by A079586, that is, the sum of reciprocals of the Fibonacci numbers F(k) for k>=1. The number c-1, the sum of reciprocals of row 1 of W, is known to be irrational (see A079586). Conjecture: the same is true for all the other rows of W.
Let h be the constant given at A153387 and s(n) the sum of reciprocals of numbers in row n of W. Then h < 1 + s(n)*floor(n*tau) < c. Thus, s(n) -> 0 as n -> oo.

Examples

			1/4 + 1/7 + 1/11 + ... = 0.629524839876312449535461795341...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[n]; g = GoldenRatio; w[n_, k_] := w[n, k] = f[k + 1]*Floor[n*g] + f[k]*(n - 1);
    n = 2; Table[w[n, k], {n, 1, 5}, {k, 1, 5}]
    r = N[Sum[1/w[n, k], {k, 1, 2000}], 120]
    RealDigits[r, 10]

Formula

Equals A093540 - 4/3. - Amiram Eldar, May 22 2021

A332937 a(n) is the greatest common divisor of the first two terms of row n of the Wythoff array (A035513).

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 5, 1, 1, 6, 1, 1, 7, 1, 1, 8, 1, 1, 9, 2, 1, 10, 1, 1, 11, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 5, 4, 3, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 7, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 8, 1, 3, 1, 2, 1, 1, 5, 12, 1, 2, 1, 1, 1, 2, 1, 13, 3, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2020

Keywords

Comments

a(n) is also the gcd of every pair of consecutive terms of row n of the Wythoff array. Conjectures: the maximal number of consecutive 1's is 5, and the limiting proportion of 1's exists. See A332938.
If seems that for all primes p > 3, a(1+p) = 1. - Antti Karttunen, Jan 15 2025

Examples

			See A332938.
		

Crossrefs

Cf. A000045, A173027, A173028, A035513, A332938 (positions of 1's).

Programs

  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; (* A035513 *)
    t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}]  (* A332937 *)
    Flatten[Position[t, 1]]  (* A332938 *)
  • PARI
    T(n, k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
    a(n) = gcd(T(n, 0), T(n, 1)); \\ Michel Marcus, Mar 03 2020

Extensions

More terms from Antti Karttunen, Jan 15 2025

A333028 Array consisting of the primitive rows of the Wythoff array (A035513), read by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 14, 5, 11, 23, 17, 8, 18, 37, 28, 19, 13, 29, 60, 45, 31, 25, 21, 47, 97, 73, 50, 41, 27, 34, 76, 157, 118, 81, 66, 44, 30, 55, 123, 254, 191, 131, 107, 71, 49, 35, 89, 199, 411, 309, 212, 173, 115, 79, 57, 43, 144, 322, 665, 500, 343, 280
Offset: 1

Views

Author

Clark Kimberling, Mar 10 2020

Keywords

Comments

In a row of the Wythoff array, either every two consecutive terms are relatively prime or else no two consecutive terms are relatively prime. In the first case, we call the row primitive; otherwise, the row is an integer multiple of a tail of a preceding row. The primitive rows are interspersed, in the sense that if h < k then the numbers in row k are interspersed, in magnitude, among numbers in row h. In each row, every pair of consecutive numbers is a Wythoff pair of relatively prime numbers. The array includes every prime.

Examples

			Northwest corner:
   1   2   3    5    8   13  21    34
   4   7  11   18   29   47  76   123
  14  23  37   60   97  157  254  411
  17  28  45   73  118  191  309  500
  19  31  50   81  131  212  343  555
  25  41  66  107  173  280  453  733
  27  44  71  115  186  301  487  788
  30  49  79  128  207  335  542  877
		

Crossrefs

Programs

  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
    t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}]
    u = Flatten[Position[t, 1]]; v[n_, k_] := W[u[[n]], k];
    TableForm[Table[v[n, k], {n, 1, 30}, {k, 1, 8}]] (* A333028 array *)
    Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten  (* A333028 sequence *)

A360379 a(n) = number of the antidiagonal of the Wythoff array (A035513) that includes prime(n).

Original entry on oeis.org

2, 3, 4, 3, 4, 6, 7, 8, 7, 6, 9, 8, 11, 17, 7, 21, 23, 24, 26, 13, 10, 14, 21, 10, 10, 39, 40, 13, 27, 19, 49, 12, 53, 23, 17, 37, 11, 63, 41, 14, 69, 29, 12, 47, 76, 10, 81, 35, 55, 88, 12, 92, 18, 26, 40, 101, 65, 104, 67, 108, 44, 30, 118, 75, 120, 22
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Comments

Conjecture: Only a finite number of positive integers are missing.

Examples

			The first 6 antidiagonals of the Wythoff array are (1), (2,4), (3,7,6), (5,11,10,9), (8,18,16,15,12), (12,29,26,24,20,14). The 10th prime is 29, which occurs in antidiagonal 6, so a(10) = 6.
		

Crossrefs

Programs

  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
    t = Table[W[n - k + 1, k], {n, 300}, {k, n, 1, -1}];
    Map[#[[1]] &, Most[Reap[NestWhileList[# + 1 &, 1,
    Length[Sow[FirstPosition[t, Prime[#]]]] > 1 &]][[2]][[1]]]]
    (* Peter J. C. Moses, Feb 08 2023 *)

A361994 (2,2)-block array, B(2,1), of the Wythoff array (A035513), read by descending antidiagonals.

Original entry on oeis.org

14, 37, 40, 97, 105, 69, 254, 275, 181, 95, 665, 720, 474, 249, 124, 1741, 1885, 1241, 652, 325, 150, 4558, 4935, 3249, 1707, 851, 393, 179, 11933, 12920, 8506, 4469, 2228, 1029, 469, 205, 31241, 33825, 22269, 11700, 5833, 2694, 1228, 537, 234, 81790, 88555
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2023

Keywords

Comments

We begin with a definition. Suppose that W = (w(i,j)), where i >= 1 and j >= 1, is an array of numbers such that if m and n satisfy 1 <= m < n, then there exists k such that w(m,k+h) < w(n,h+1) < w(m,k+h+1) for every h >= 0. Then W is a row-splitting array. The array B(2,2) is a row-splitting array. The rows of B(2,2) are linearly recurrent with signature (3,-1); the columns are linearly recurrent with signature (1,1,-1). The order array (as defined in A333029) of B(2,2) is A361996.

Examples

			Corner of B(2,2):
   14    37    97   254   665   1741 ...
   40   105   275   720  1885   4935 ...
   69   181   474  1241  3249   8506 ...
   95   249   652  1707  4469  11700 ...
  124   325   851  2228  5833  15271 ...
  ...
b(1,1) = w(1,1) + w(1,2) + w(2,1) + w(2,2) = 1 +  2 +  4 +  7 = 14;
b(1,2) = w(1,3) + w(1,4) + w(2,3) + w(2,4) = 3 +  5 + 11 + 18 = 37;
b(2,1) = w(3,1) + w(3,2) + w(4,1) + w(4,2) = 8 + 10 +  9 + 15 = 40.
		

Crossrefs

Cf. A000045, A001622, A035513, A080164, A361976, A361992 (array B(1,2)), A361993 (array B(2,1)).

Programs

  • Mathematica
    f[n_] := Fibonacci[n]; r = GoldenRatio;
    zz = 10; z = 13;
    w[n_, k_] := f[k + 1] Floor[n*r] + (n - 1) f[k]
    t[h_, k_] := w[2 h - 1, 2 k - 1] + w[2 h - 1, 2 k] + w[2 h, 2 k - 1] + w[2 h, 2 k];
    Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten  (*A361994 sequence *)
    TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* A361994 array *)

Formula

B(2,2) = (b(i,j)), where b(i,j) = w(2i-1,2j-1) + w(2i-1,2j) + w(2i,2j-1) + w(2i,2j) for i >= 1, j >= 1, where (w(i,j)) is the Wythoff array (A035513).
Showing 1-10 of 183 results. Next