A269725 a(n) = row number of extended Wythoff array (see A035513) which contains the sequence n times the Fibonacci numbers 1,2,3,5,8,13,21,... .
0, 2, 3, 4, 15, 18, 21, 24, 27, 30, 33, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 630, 651, 672, 693, 714, 735, 756, 777, 798, 819, 840, 861, 882, 903, 924, 945, 966, 987, 1008, 1029, 1050, 1071, 1092, 1113, 1134, 1155, 1176, 1197, 1218, 1239, 1260
Offset: 1
Examples
Take n=5: 5 times 1,2,3,5,8,13,... gives 5,10,15,25,40,65,.., which is row 15 of the extended Wythoff array (when extended to the left), so a(5) = 15.
References
- J. H. Conway, Posting to Math Fun Mailing List, Nov 25 1996.
Links
- J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, On Kimberling Sums and Para-Fibonacci Sequences, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997
Programs
-
Maple
A269725 := proc(n) local f,sl,r,c,wrks ; f := [seq(n*combinat[fibonacci](i),i=2..30)] ; for sl from 0 do for r from 1 do if A035513(r,1) = op(1+sl,f) then wrks := true; for c from 2 to 5 do if A035513(r,c) <> op(c+sl,f) then wrks := false; end if; end do: if wrks then print(n,f,r) ; return r-1 ; end if; elif A035513(r,1) > op(1+sl,f) then break ; end if; end do: end do: end proc: # R. J. Mathar, May 06 2017
-
Mathematica
W[n_, k_] := Fibonacci[k+1] Floor[n*GoldenRatio] + (n-1) Fibonacci[k]; a[n_] := Module[{f, sl, r, c, wrks}, f = Table[n*Fibonacci[i], {i, 2, 30}]; For[sl = 0, True, sl++, For[r = 1, True, r++, Which[W[r, 1] == f[[1 + sl]], wrks = True; For[c = 2, c <= 5, c++, If[W[r, c] != f[[c+sl]], wrks = False]]; If[wrks, Return[r-1]], W[r, 1] > f[[1+sl]], Break[]]]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 13 2022, after R. J. Mathar *)
Formula
a(n) = A173027(n)-1. - R. J. Mathar, May 06 2017
Comments