cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007066 a(n) = 1 + ceiling((n-1)*phi^2), phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 7, 9, 12, 15, 17, 20, 22, 25, 28, 30, 33, 36, 38, 41, 43, 46, 49, 51, 54, 56, 59, 62, 64, 67, 70, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 98, 101, 104, 106, 109, 111, 114, 117, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 151, 153, 156, 159, 161, 164, 166
Offset: 1

Views

Author

Keywords

Comments

First column of dual Wythoff array, A126714.
Positions of 0's in A189479.
Skala (2016) asks if this sequence also gives the positions of the 0's in A283310. - N. J. A. Sloane, Mar 06 2017
Upper Wythoff sequence plus 2, when shifted by 1. - Michel Dekking, Aug 26 2019
In the Fokkink-Joshi paper, this sequence is the Cloitre (0,1,2,3)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n, else a(n) = a(n-1)+3. - Michael De Vlieger, Jul 30 2025

References

  • Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.
  • D. R. Morrison, "A Stolarsky array of Wythoff pairs," in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064437.
Apart from initial terms, same as A026356 (Cloitre (0,2,2,3)-hiccup sequence).
First column of A126714.
Complement is (essentially) A026355.
Equals 1 + A004957, also n + A004956.
First differences give A076662.
Complement of A099267. [Gerald Hillier, Dec 19 2008]
Cf. A193214 (primes). Except for the first term equal to A001950 + 2.
Cf. A026352 (Cloitre (1,1,2,3)-hiccup sequence), A064437 (Cloitre (0,1,3,2)-hiccup sequence).

Programs

  • Haskell
    a007066 n = a007066_list !! (n-1)
    a007066_list = 1 : f 2 [1] where
       f x zs@(z:_) = y : f (x + 1) (y : zs) where
         y = if x `elem` zs then z + 2 else z + 3
    -- Reinhard Zumkeller, Sep 26 2014, Sep 18 2011
    
  • Maple
    Digits := 100: t := (1+sqrt(5))/2; A007066 := proc(n) if n <= 1 then 1 else floor(1+t*floor(t*(n-1)+1)); fi; end;
  • Mathematica
    t = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0, 1}}] &, {0}, 6] (*A189479*)
    Flatten[Position[t, 0]] (*A007066*)
    Flatten[Position[t, 1]] (*A099267*)
    With[{grs=GoldenRatio^2},Table[1+Ceiling[grs(n-1)],{n,70}]] (* Harvey P. Dale, Jun 24 2011 *)
  • Python
    from math import isqrt
    def A007066(n): return (n+1+isqrt(5*(n-1)**2)>>1)+n if n > 1 else 1 # Chai Wah Wu, Aug 25 2022

Formula

a(n) = floor(1+phi*floor(phi*(n-1)+1)), phi=(1+sqrt(5))/2, n >= 2.
a(1)=1; for n>1, a(n)=a(n-1)+2 if n is already in the sequence, a(n)=a(n-1)+3 otherwise. - Benoit Cloitre, Mar 06 2003
a(n+1) = floor(n*phi^2) + 2, n>=1. - Michel Dekking, Aug 26 2019

A047924 a(n) = B_{A_n+1}+1, where A_n = floor(n*phi) = A000201(n), B_n = floor(n*phi^2) = A001950(n) and phi is the golden ratio.

Original entry on oeis.org

3, 6, 11, 14, 19, 24, 27, 32, 35, 40, 45, 48, 53, 58, 61, 66, 69, 74, 79, 82, 87, 90, 95, 100, 103, 108, 113, 116, 121, 124, 129, 134, 137, 142, 147, 150, 155, 158, 163, 168, 171, 176, 179, 184, 189, 192, 197, 202, 205, 210, 213, 218, 223, 226, 231, 234, 239
Offset: 0

Views

Author

Keywords

Comments

2nd column of array in A038150.
Apart from the first term also the second column of A126714; see also A223025. - Casey Mongoven, Mar 11 2013

References

  • Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.

Crossrefs

Cf. A007066.

Programs

  • Maple
    A001950 := proc(n)
            local phi;
            phi := (1+sqrt(5))/2 ;
            floor(n*phi^2) ;
    end proc:
    A000201 := proc(n)
            local phi;
            phi := (1+sqrt(5))/2 ;
            floor(n*phi) ;
    end proc:
    A047924 := proc(n)
            1+A001950(1+A000201(n)) ;
    end proc: # R. J. Mathar, Mar 20 2013
  • Mathematica
    A[n_] := Floor[n*GoldenRatio]; B[n_] := Floor[n*GoldenRatio^2]; a[n_] := B[A[n]+1]+1; Table[a[n], {n, 0, 56}] (* Jean-François Alcover, Feb 11 2014 *)
  • Python
    from mpmath import *
    mp.dps=100
    import math
    def A(n): return int(math.floor(n*phi))
    def B(n): return int(math.floor(n*phi**2))
    def a(n): return B(A(n) + 1) + 1 # Indranil Ghosh, Apr 25 2017
    
  • Python
    from math import isqrt
    def A047924(n): return ((m:=(n+isqrt(5*n**2)>>1)+1)+isqrt(5*m**2)>>1)+m+1 # Chai Wah Wu, Aug 25 2022

Extensions

More terms from Naohiro Nomoto, Jun 08 2001
New description from Aviezri S. Fraenkel, Aug 03 2007

A167198 Fractal sequence of the interspersion A083047.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 2, 3, 5, 1, 4, 6, 2, 7, 3, 5, 8, 1, 9, 4, 6, 10, 2, 7, 11, 3, 12, 5, 8, 13, 1, 9, 14, 4, 15, 6, 10, 16, 2, 17, 7, 11, 18, 3, 12, 19, 5, 20, 8, 13, 21, 1, 22, 9, 14, 23, 4, 15, 24, 6, 25, 10, 16, 26, 2, 17, 27, 7, 28, 11, 18, 29, 3, 30, 12, 19, 31, 5, 20, 32, 8, 33, 13
Offset: 1

Views

Author

Clark Kimberling, Oct 30 2009

Keywords

Comments

As a fractal sequence, if the first occurrence of each term is deleted, the remaining sequence is the original. In general, the interspersion of a fractal sequence is constructed by rows: row r consists of all n, such that a(n)=r; in particular, A083047 is constructed in this way from A167198.
a(n-1) gives the row number which contains n in the dual Wythoff array A126714 (beginning the row count at 1), see also A223025 and A019586. - Casey Mongoven, Mar 11 2013

Examples

			To produce row 5, first write row 4: 2,3,1, then place 4 right before 2, and then place 5 right before 1, getting 4,2,3,5,1.
		

References

  • Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.

Crossrefs

Formula

Following is a construction that avoids reference to A083047.
Write initial rows:
Row 1: .... 1
Row 2: .... 1
Row 3: .... 2..1
Row 4: .... 2..3..1
For n>=4, to form row n+1, let k be the least positive integer not yet used; write row n, and right before the first number that is also in row n-1, place k; right before the next number that is also in row n-1, place k+1, and continue. A167198 is the concatenation of the rows. (If "before" is replaced by "after", the resulting fractal sequence is A003603, and the associated interspersion is the Wythoff array, A035513.)

A223025 Gives the column number which contains n in the dual Wythoff array (beginning the column count at 1).

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 1, 5, 1, 3, 2, 1, 6, 2, 1, 4, 1, 3, 2, 1, 7, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 8, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 9, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 7, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2
Offset: 1

Views

Author

Casey Mongoven, Mar 11 2013

Keywords

Examples

			a(23) = 3 because 23 is in the third column of the dual Wythoff array (see A126714).
		

References

  • Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.

Crossrefs

Showing 1-4 of 4 results.