A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A022086 Fibonacci sequence beginning 0, 3.
0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165, 267, 432, 699, 1131, 1830, 2961, 4791, 7752, 12543, 20295, 32838, 53133, 85971, 139104, 225075, 364179, 589254, 953433, 1542687, 2496120, 4038807, 6534927, 10573734, 17108661, 27682395, 44791056, 72473451, 117264507
Offset: 0
Comments
First differences of A111314. - Ross La Haye, May 31 2006
Pisano period lengths: 1, 3, 1, 6, 20, 3, 16, 12, 8, 60, 10, 6, 28, 48, 20, 24, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
For n>=6, a(n) is the number of edge covers of the union of two cycles C_r and C_s, r+s=n, with a single common vertex. - Feryal Alayont, Oct 17 2024
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[3*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
-
Maple
BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L),BB(k)]: od: L; # Zerinvary Lajos, Mar 19 2007 with (combinat):seq(sum((fibonacci(n,1)),m=1..3),n=0..32); # Zerinvary Lajos, Jun 19 2008
-
Mathematica
LinearRecurrence[{1, 1}, {0, 3}, 40] (* Arkadiusz Wesolowski, Aug 17 2012 *) Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *) Table[3 Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Dec 31 2016 *)
-
PARI
a(n)=3*fibonacci(n) \\ Charles R Greathouse IV, Nov 06 2014
-
SageMath
def A022086(n): return 3*fibonacci(n) print([A022086(n) for n in range(41)]) # G. C. Greubel, Apr 10 2025
Formula
a(n) = 3*Fibonacci(n).
a(n) = F(n-2) + F(n+2) for n>1, with F=A000045.
a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+1,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 3*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = A187893(n) - 1. - Filip Zaludek, Oct 29 2016
E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Oct 29 2016
a(n) = F(n+4) + F(n-4) - 4*F(n), F = A000045. - Bruno Berselli, Dec 29 2016
A119457 Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.
1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1
Examples
Triangle begins as: 1; 2, 2; 3, 4, 3; 4, 6, 6, 5; 5, 8, 9, 10, 8; 6, 10, 12, 15, 16, 13; 7, 12, 15, 20, 24, 26, 21; 8, 14, 18, 25, 32, 39, 42, 34; 9, 16, 21, 30, 40, 52, 63, 68, 55; 10, 18, 24, 35, 48, 65, 84, 102, 110, 89; 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144; 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Fibonacci Number
Crossrefs
Main diagonal: A023607(n).
Columns: A000027(n) (k=1), A005843(n-1) (k=2), A008585(n-2) (k=3), A008587(n-3) (k=4), A008590(n-4) (k=5), A008595(n-5) (k=6), A008603(n-6) (k=7).
Programs
-
Magma
A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >; [A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
-
Mathematica
(* First program *) T[n_, 1] := n; T[n_ /; n > 1, 2] := 2 n - 2; T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *) (* Second program *) A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1]; Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
-
SageMath
def A119457(n,k): return (n-k+1)*fibonacci(k+1) print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025
Formula
T(n, k) = (n-k+1)*T(k,k) for 1 <= k < n, with T(n, n) = A000045(n+1).
From G. C. Greubel, Apr 15 2025: (Start)
T(n, k) = (n-k+1)*Fibonacci(k+1).
A280154 a(n) = 5*Lucas(n).
10, 5, 15, 20, 35, 55, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6820, 11035, 17855, 28890, 46745, 75635, 122380, 198015, 320395, 518410, 838805, 1357215, 2196020, 3553235, 5749255, 9302490, 15051745, 24354235, 39405980, 63760215, 103166195, 166926410, 270092605, 437019015
Offset: 0
Comments
Fibonacci sequence beginning 10, 5.
After 5, the sequence provides the 3rd column of the rectangular array in A213590.
After 5, all terms belong to A191921 because a(n) = Lucas(n+4) - 3*Lucas(n-1).
From G. C. Greubel, Dec 27 2016: (Start)
{a(n) mod 3} yields (1,2,0,2,2,1,0,1), repeated, and is given as A082115.
{a(n) mod 6} yields (4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1) and is given as A082117. (End)
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[5*Lucas(n): n in [0..40]];
-
Maple
F := n -> combinat:-fibonacci(n): seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
-
Mathematica
Table[5 LucasL[n], {n, 0, 40}]
-
PARI
vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
-
Sage
def A280154(): x, y = 10, 5 while True: yield x x, y = y, x + y a = A280154(); print([next(a) for in range(39)]) # _Peter Luschny, Dec 29 2016
Formula
G.f.: 5*(2 - x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2) for n>1.
a(n) = Fibonacci(n+5) + Fibonacci(n-5), with Fibonacci(-k) = -(-1)^k*Fibonacci(k) for the negative indices.
A294157 Fibonacci sequence beginning 2, 8.
2, 8, 10, 18, 28, 46, 74, 120, 194, 314, 508, 822, 1330, 2152, 3482, 5634, 9116, 14750, 23866, 38616, 62482, 101098, 163580, 264678, 428258, 692936, 1121194, 1814130, 2935324, 4749454, 7684778, 12434232, 20119010, 32553242, 52672252, 85225494, 137897746, 223123240
Offset: 0
References
- Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications (2008), page 24 (formula 8).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a0:=2; a1:=8; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]];
-
Maple
f:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2),a(0)=2,a(1)=8},a(n),remember): map(f, [$0..100]); # Robert Israel, Oct 24 2017
-
Mathematica
LinearRecurrence[{1, 1}, {2, 8}, 40]
-
PARI
Vec(2*(1 + 3*x)/(1 - x - x^2) + O(x^40)) \\ Colin Barker, Oct 25 2017
-
Sage
a = BinaryRecurrenceSequence(1, 1, 2, 8) print([a(n) for n in range(38)]) # Peter Luschny, Oct 25 2017
Formula
G.f.: 2*(1 + 3*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
a(n) = 2*A000285(n).
Let g(r,s;n) be the n-th generalized Fibonacci number with initial values r, s. We have:
a(n) = Lucas(n) + g(0,7;n), see A022090;
a(n) = Fibonacci(n) + g(2,7;n), see A022113;
a(n) = 2*g(1,8;n) - g(0,8;n);
a(n) = g(1,k;n) + g(1,8-k;n) for all k in Z.
a(h+k) = a(h)*Fibonacci(k-1) + a(h+1)*Fibonacci(k) for all h, k in Z (see S. Vajda in References section). For h=0 and k=n:
a(n) = 2*Fibonacci(n-1) + 8*Fibonacci(n).
Sum_{j=0..n} a(j) = a(n+2) - 8.
a(n) = (2^(-n)*((1-sqrt(5))^n*(-7+sqrt(5)) + (1+sqrt(5))^n*(7+sqrt(5)))) / sqrt(5). - Colin Barker, Oct 25 2017
A168622 Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.
1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 14, 1; 1, 21, 21, 1; 1, 28, 42, 28, 1; 1, 35, 70, 70, 35, 1; 1, 42, 105, 140, 105, 42, 1; 1, 49, 147, 245, 245, 147, 49, 1; 1, 56, 196, 392, 490, 392, 196, 56, 1; 1, 63, 252, 588, 882, 882, 588, 252, 63, 1; 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >; [A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
-
Mathematica
(* First program *) p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]]; Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten (* Second program *) A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]]; Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
-
SageMath
def A168622(n,k): if k==0 or k==n: return 1 else: return 7*binomial(n,k) print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025
Formula
From G. C. Greubel, Apr 10 2025: (Start)
T(n, k) = 7*binomial(n, k), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2*A048489(n-1) + 6*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -6*(1 + (-1)^n) + 13*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022090(n+1) - 3*(3 + (-1)^n) + 6*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (14/sqrt(3))*(-1)^n*cos((4*n+1)*Pi/6) - 6*(1 + (-1)^n*cos(n*Pi/2)) + 6*[n=0]. (End)
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions