cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A035513 Wythoff array read by falling antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1

Views

Author

Keywords

Comments

T(0,0)=1, T(0,1)=2,...; y^2-x^2-xy
Inverse of sequence A064274 considered as a permutation of the nonnegative integers. - Howard A. Landman, Sep 25 2001
The Wythoff array W consists of all the Wythoff pairs (x(n),y(n)), where x=A000201 and y=A001950, so that W contains every positive integer exactly once. The differences T(i,2j+1)-T(i,2j) form the Wythoff difference array, A080164, which also contains every positive integer exactly once. - Clark Kimberling, Feb 08 2003
For n>2 the determinant of any n X n contiguous subarray of A035513 (as a square array) is 0. - Gerald McGarvey, Sep 18 2004
From Clark Kimberling, Nov 14 2007: (Start)
Except for initial terms in some cases:
(Row 1) = A000045
(Row 2) = A000032
(Row 3) = A006355
(Row 4) = A022086
(Row 5) = A022087
(Row 6) = A000285
(Row 7) = A022095
(Row 8) = A013655 (sum of Fibonacci and Lucas numbers)
(Row 9) = A022112
(Column 1) = A003622 = AA Wythoff sequence
(Column 2) = A035336 = BA Wythoff sequence
(Column 3) = A035337 = ABA Wythoff sequence
(Column 4) = A035338 = BBA Wythoff sequence
(Column 5) = A035339 = ABBA Wythoff sequence
(Column 6) = A035340 = BBBA Wythoff sequence
Main diagonal = A020941. (End)
The Wythoff array is the dispersion of the sequence given by floor(n*x+x-1), where x=(golden ratio). See A191426 for a discussion of dispersions. - Clark Kimberling, Jun 03 2011
If u and v are finite sets of numbers in a row of the Wythoff array such that (product of all the numbers in u) = (product of all the numbers in v), then u = v. See A160009 (row 1 products), A274286 (row 2), A274287 (row 3), A274288 (row 4). - Clark Kimberling, Jun 17 2016
All columns of the Wythoff array are compound Wythoff sequences. This follows from the main theorem in the 1972 paper by Carlitz, Scoville and Hoggatt. For an explicit expression see Theorem 10 in Kimberling's paper from 2008 in JIS. - Michel Dekking, Aug 31 2017
The Wythoff array can be viewed as an infinite graph over the set of nonnegative integers, built as follows: start with an empty graph; for all n = 0, 1, ..., create an edge between n and the sum of the degrees of all i < n. Finally, remove vertex 0. In the resulting graph, the connected components are chains and correspond to the rows of the Wythoff array. - Luc Rousseau, Sep 28 2017
Suppose that h < k are consecutive terms in a row of the Wythoff array. If k is in an even numbered column, then h = floor(k/tau); otherwise, h = -1 + floor(k/tau). - Clark Kimberling, Mar 05 2020
From Clark Kimberling, May 26 2020: (Start)
For k > = 0, column k shows the numbers m having F(k+1) as least term in the Zeckendorf representation of m. For n >= 1, let r(n,k) be the number of terms in column k that are <= n. Then n/r(n,k) = n/(F(k+1)*tau + F(k)*(n-1)), by Bottomley's formula, so that the limiting ratio is 1/(F(k+1)*tau + F(k)). Summing over all k gives Sum_{k>=0} 1/(F(k+1)*tau + F(k)) = 1. Thus, in the limiting sense:
38.19...% of the numbers m have least term 1;
23.60...% have least term 2;
14.58...% have least term 3;
9.01...% have least term 5, etc. (End)
Named after the Dutch mathematician Willem Abraham Wythoff (1865-1939). - Amiram Eldar, Jun 11 2021
From Clark Kimberling, Jun 04 2025: (Start)
Let u(n) = (T(n,1),T(n,2)) mod 2. The positive integers (A000027) are partitioned into 4 sets (sequences):
{n : u(n) = (0,0)} = (3, 5, 9, 15, 19, 25, 29,...) = 1 + 2*A190429
{n: u(n) = (0,1)} = (2, 6, 12, 16, 18, 22, 28,...) = A191331
{n : u(n) = (1,0)} = (1, 7, 11, 13, 17, 21, 23,...) = A086843
{n: u(n) = (1,1)} = (4, 8, 10, 14, 20, 24, 26,...) = A191330.
Let v(n) = (T(n,1),T(n,2)) mod 3. The positive integers are partitioned into 9 sets (sequences):
{n : v(n) = (0,0)} = (4, 13, 19, 28, 43, 52,...) = 1 + 3*A190434
{n: v(n) = (0,1)} = (3, 12, 27, 36, 42, 51,...) = 3*A140399
{n : v(n) = (0,2)} = (5, 11, 20, 35, 44, 50,...) = 2 + 3*A190439
{n: v(n) = (1,0)} = (9, 18, 24, 33, 48, 57,...) = 3*A140400
{n: v(n) = (1,1)} = (2, 8, 17, 26, 32, 41,...) = A384601
{n : v(n) = (1,2)} = (1, 10, 16, 25, 34, 40,...) = A384602
{n: v(n) = (2,0)} = (14, 23, 29, 38, 47, 53,...) = 2 + 3*A190438
{n: v(n) = (2,1)} = (7, 22, 31, 37, 46, 61,...) = 1 + 3*A190433
{n : v(n) = (2,2)} = (6, 15, 21, 30, 39, 45,...) = 3*A140398.
Conjecture: If m >= 2, then {(T(n,1), T(n,2)) mod m} has cardinality m^2. (End)

Examples

			The Wythoff array begins:
   1    2    3    5    8   13   21   34   55   89  144 ...
   4    7   11   18   29   47   76  123  199  322  521 ...
   6   10   16   26   42   68  110  178  288  466  754 ...
   9   15   24   39   63  102  165  267  432  699 1131 ...
  12   20   32   52   84  136  220  356  576  932 1508 ...
  14   23   37   60   97  157  254  411  665 1076 1741 ...
  17   28   45   73  118  191  309  500  809 1309 2118 ...
  19   31   50   81  131  212  343  555  898 1453 2351 ...
  22   36   58   94  152  246  398  644 1042 1686 2728 ...
  25   41   66  107  173  280  453  733 1186 1919 3105 ...
  27   44   71  115  186  301  487  788 1275 2063 3338 ...
  ...
The extended Wythoff array has two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
0     1  |   1    2    3    5    8   13   21   34   55   89  144   ...
1     3  |   4    7   11   18   29   47   76  123  199  322  521   ...
2     4  |   6   10   16   26   42   68  110  178  288  466  754   ...
3     6  |   9   15   24   39   63  102  165  267  432  699 1131   ...
4     8  |  12   20   32   52   84  136  220  356  576  932 1508   ...
5     9  |  14   23   37   60   97  157  254  411  665 1076 1741   ...
6    11  |  17   28   45   73  118  191  309  500  809 1309 2118   ...
7    12  |  19   31   50   81  131  212  343  555  898 1453 2351   ...
8    14  |  22   36   58   94  152  246  398  644 1042 1686 2728   ...
9    16  |  25   41   66  107  173  280  453  733 1186 1919 3105   ...
10   17  |  27   44   71  115  186  301  487  788 1275 2063 3338   ...
11   19  |  30   49   79   ...
12   21  |  33   54   87   ...
13   22  |  35   57   92   ...
14   24  |  38   62   ...
15   25  |  40   65   ...
16   27  |  43   70   ...
17   29  |  46   75   ...
18   30  |  48   78   ...
19   32  |  51   83   ...
20   33  |  53   86   ...
21   35  |  56   91   ...
22   37  |  59   96   ...
23   38  |  61   99   ...
24   40  |  64   ...
25   42  |  67   ...
26   43  |  69   ...
27   45  |  72   ...
28   46  |  74   ...
29   48  |  77   ...
30   50  |  80   ...
31   51  |  82   ...
32   53  |  85   ...
33   55  |  88   ...
34   56  |  90   ...
35   58  |  93   ...
36   59  |  95   ...
37   61  |  98   ...
38   63  |     ...
   ...
Each row of the extended Wythoff array also satisfies the Fibonacci recurrence, and may be extended to the left using this recurrence backwards.
From _Peter Munn_, Jun 11 2021: (Start)
The Wythoff array appears to have the following relationship to the traditional Fibonacci rabbit breeding story, modified for simplicity to be a story of asexual reproduction.
Give each rabbit a number, 0 for the initial rabbit.
When a new round of rabbits is born, allocate consecutive numbers according to 2 rules (the opposite of many cultural rules for inheritance precedence): (1) newly born child of Rabbit 0 gets the next available number; (2) the descendants of a younger child of any given rabbit precede the descendants of an older child of the same rabbit.
Row n of the Wythoff array lists the children of Rabbit n (so Rabbit 0's children have the Fibonacci numbers: 1, 2, 3, 5, ...). The generation tree below shows rabbits 0 to 20. It is modified so that each round of births appears on a row.
                                                                 0
                                                                 :
                                       ,-------------------------:
                                       :                         :
                       ,---------------:                         1
                       :               :                         :
              ,--------:               2               ,---------:
              :        :               :               :         :
        ,-----:        3         ,-----:         ,-----:         4
        :     :        :         :     :         :     :         :
     ,--:     5     ,--:     ,---:     6     ,---:     7     ,---:
     :  :     :     :  :     :   :     :     :   :     :     :   :
  ,--:  8  ,--:  ,--:  9  ,--:  10  ,--:  ,--:  11  ,--:  ,--:  12
  :  :  :  :  :  :  :  :  :  :   :  :  :  :  :   :  :  :  :  :   :
  : 13  :  : 14  : 15  :  : 16   :  : 17  : 18   :  : 19  : 20   :
The extended array's nontrivial extra column (A000201) gives the number that would have been allocated to the first child of Rabbit n, if Rabbit n (and only Rabbit n) had started breeding one round early.
(End)
		

References

  • John H. Conway, Posting to Math Fun Mailing List, Nov 25 1996.
  • Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.

Crossrefs

See comments above for more cross-references.
Cf. A003622, A064274 (inverse), A083412 (transpose), A000201, A001950, A080164, A003603, A265650, A019586 (row that contains n).
For two versions of the extended Wythoff array, see A287869, A287870.

Programs

  • Maple
    W:= proc(n,k) Digits:= 100; (Matrix([n, floor((1+sqrt(5))/2* (n+1))]). Matrix([[0,1], [1,1]])^(k+1))[1,2] end: seq(seq(W(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 18 2008
    A035513 := proc(r, c)
        option remember;
        if c = 1 then
            A003622(r) ;
        else
            A022342(1+procname(r, c-1)) ;
        end if;
    end proc:
    seq(seq(A035513(r,d-r),r=1..d-1),d=2..15) ; # R. J. Mathar, Jan 25 2015
  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; Table[ W[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
  • PARI
    T(n,k)=(n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k)
    for(k=0,9,for(n=1,k, print1(T(n,k+1-n)", "))) \\ Charles R Greathouse IV, Mar 09 2016
    
  • Python
    from sympy import fibonacci as F, sqrt
    import math
    tau = (sqrt(5) + 1)/2
    def T(n, k): return F(k + 1)*int(math.floor(n*tau)) + F(k)*(n - 1)
    for n in range(1, 11): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 23 2017
    
  • Python
    from math import isqrt, comb
    from gmpy2 import fib2
    def A035513(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        x = n-comb(a,2)
        b, c = fib2(a-x+2)
        return b*(x+isqrt(5*x*x)>>1)+c*(x-1) # Chai Wah Wu, Jun 26 2025

Formula

T(n, k) = Fib(k+1)*floor[n*tau]+Fib(k)*(n-1) where tau = (sqrt(5)+1)/2 = A001622 and Fib(n) = A000045(n). - Henry Bottomley, Dec 10 2001
T(n,-1) = n-1. T(n,0) = floor(n*tau). T(n,k) = T(n,k-1) + T(n,k-2) for k>=1. - R. J. Mathar, Sep 03 2016

Extensions

Comments about the extended Wythoff array added by N. J. A. Sloane, Mar 07 2016

A022086 Fibonacci sequence beginning 0, 3.

Original entry on oeis.org

0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165, 267, 432, 699, 1131, 1830, 2961, 4791, 7752, 12543, 20295, 32838, 53133, 85971, 139104, 225075, 364179, 589254, 953433, 1542687, 2496120, 4038807, 6534927, 10573734, 17108661, 27682395, 44791056, 72473451, 117264507
Offset: 0

Keywords

Comments

First differences of A111314. - Ross La Haye, May 31 2006
Pisano period lengths: 1, 3, 1, 6, 20, 3, 16, 12, 8, 60, 10, 6, 28, 48, 20, 24, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
For n>=6, a(n) is the number of edge covers of the union of two cycles C_r and C_s, r+s=n, with a single common vertex. - Feryal Alayont, Oct 17 2024

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17.

Crossrefs

Essentially the same as A097135.
Sequences of the form Fibonacci(n+k) + Fibonacci(n-k) are listed in A280154.
Sequences of the form m*Fibonacci: A000045 (m=1), A006355 (m=2), this sequence (m=3), A022087 (m=4), A022088 (m=5), A022089 (m=6), A022090 (m=7), A022091 (m=8), A022092 (m=8), A022093 (m=10), A022345...A022366 (m=11...32).

Programs

  • Magma
    [3*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
    
  • Maple
    BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L),BB(k)]: od: L; # Zerinvary Lajos, Mar 19 2007
    with (combinat):seq(sum((fibonacci(n,1)),m=1..3),n=0..32); # Zerinvary Lajos, Jun 19 2008
  • Mathematica
    LinearRecurrence[{1, 1}, {0, 3}, 40] (* Arkadiusz Wesolowski, Aug 17 2012 *)
    Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *)
    Table[3 Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Dec 31 2016 *)
  • PARI
    a(n)=3*fibonacci(n) \\ Charles R Greathouse IV, Nov 06 2014
    
  • SageMath
    def A022086(n): return 3*fibonacci(n)
    print([A022086(n) for n in range(41)]) # G. C. Greubel, Apr 10 2025

Formula

a(n) = 3*Fibonacci(n).
a(n) = F(n-2) + F(n+2) for n>1, with F=A000045.
a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+1,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 3*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = A187893(n) - 1. - Filip Zaludek, Oct 29 2016
E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Oct 29 2016
a(n) = F(n+4) + F(n-4) - 4*F(n), F = A000045. - Bruno Berselli, Dec 29 2016

A267633 Expansion of (1 - 4t)/(1 - x + t x^2): a Fibonacci-type sequence of polynomials.

Original entry on oeis.org

1, -4, 1, -4, 1, -5, 4, 1, -6, 8, 1, -7, 13, -4, 1, -8, 19, -12, 1, -9, 26, -25, 4, 1, -10, 34, -44, 16, 1, -11, 43, -70, 41, -4, 1, -12, 53, -104, 85, -20, 1, -13, 64, -147, 155, -61, 4, 1, -14, 76, -200, 259, -146, 24
Offset: 0

Author

Tom Copeland, Jan 18 2016

Keywords

Examples

			Row polynomials:
P(0,t) = 1 - 4t
P(1,t) = 1 - 4t = [-t(0) + (1-4t)] = -t(0) + P(0,t)
P(2,t) = 1 - 5t + 4t^2 = [-t(1-4t) + (1-4t)] = -t P(0,t) + P(1,t)
P(3,t) = 1 - 6t + 8t^2 = [-t(1-4t) + (1-5t+4t^2)] = -t P(1,t) + P(2,t)
P(4,t) = 1 - 7t + 13t^2 - 4t^3 = [-t(1-5t+4t^2) + (1-6t+8t^2)]
P(5,t) = 1 - 8t + 19t^2 - 12t^3 = [-t(1-6t+8t^2) + (1-7t+13t^2)]
P(6,t) = 1 - 9t + 26t^2 - 25t^3 + 4t^4
P(7,t) = 1 - 10t + 34t^2 - 44t^3 + 16t^4
P(8,t) = 1 - 11t + 43t^2 - 70t^3 + 41t^4 - 4t^5
P(9,t) = 1 - 12t + 53t^2 - 104t^3 + 85t^4 - 20t^5
P(10,t) = 1 - 13t + 64t^2 - 147t^3 + 155t^4 - 61t^5 + 4t^6
P(11,t) = 1 - 14t + 76t^2 - 200t^3 + 259t^4 - 146t^5 + 24t^6
...
Apparently: The odd rows for n>1 are reversed rows of A140882 (mod signs), and the even rows for n>0, the 9th, 15th, 21st, 27th, etc. rows of A228785 (mod signs). The diagonals are reverse rows of A202241.
		

Programs

  • Mathematica
    p = (1 - 4 t) / (1 - x + t x^2) + O[x]^12 // CoefficientList[#, x] &;
    CoefficientList[#, t] & /@ p // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)

Formula

O.g.f. G(x,t) = (1 - 4t)/(1 - x + t x^2) = a / [t (x - (1+sqrt(a))/(2t))(x - (1-sqrt(a))/(2t))] with a = 1-4t.
Recursion P(n,t) = -t P(n-2,t) + P(n-1,t) with P(-1,t)=0 and P(0,t) = 1-4t.
Convolution of the Fibonacci polynomials of signed A011973 Fb(n,-t) with coefficients of (1-4t), e.g., (1-4t)Fb(5,-t) = (1-4t)(1-3t+t^2) = 1-7t+13t^2-4t^3, so, for n>=1 and k<=(n-1), T(n,k) = (-1)^k [-4*binomial(n-(k-1),k-1) - binomial(n-k,k)] with the convention that 1/(-m)! = 0 for m>=1, i.e., let binomial(n,k) = nint[n!/((k+c)!(n-k+c)!)] for c sufficiently small in magnitude.
Third column is A034856, and the fourth, A000297. Embedded in the coefficients of the highest order term of the polynomials is A008586 (cf. also A008574).
With P(0,t)=0, the o.g.f. is H(x,t) = (1-4t) x(1-tx)/[1-x(1-tx)] = (1-4t) Linv(Cinv(tx)/t), where Linv(x) = x/(1-x) with inverse L(x) = x/(1+x) and Cinv(x) = x (1-x) is the inverse of the o.g.f. of the shifted Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2. Then Hinv(x,t) = C[t L(x/(1-4t))]/t = {1 - sqrt[1-4t(x/(1-4t))/[1+x/(1-4t)]]}/2t = {1-sqrt[1-4tx/(1-4t+x)]}/2t = 1/(1-4t) + (-1+t)/(1-4t)^2 x + (1-2t+2t^2)/(1-4t)^3 x^ + (-1+3t-6t^2+5t^3)/(1-4t)^4 + ..., where the numerators are the signed polynomials of A098474, reverse of A124644.
Row sums (t=1) are periodic -3,-3,0,3,3,0, repeat the six terms ... with o.g.f. -3 - 3x (1-x) / [1-x(1-x)]. Cf. A084103.
Unsigned row sums (t=-1) are shifted A022088 with o.g.f. 5 + 5x(1+x) / [x(1+x)].

Extensions

Data corrected by Andrey Zabolotskiy, Mar 07 2024

A119457 Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1

Author

Reinhard Zumkeller, May 20 2006

Keywords

Examples

			Triangle begins as:
   1;
   2,  2;
   3,  4,  3;
   4,  6,  6,  5;
   5,  8,  9, 10,  8;
   6, 10, 12, 15, 16, 13;
   7, 12, 15, 20, 24, 26,  21;
   8, 14, 18, 25, 32, 39,  42,  34;
   9, 16, 21, 30, 40, 52,  63,  68,  55;
  10, 18, 24, 35, 48, 65,  84, 102, 110,  89;
  11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144;
  12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
		

Crossrefs

Main diagonal: A023607(n).
Sums: A001891 (row), A355020 (signed row).
Columns: A000027(n) (k=1), A005843(n-1) (k=2), A008585(n-2) (k=3), A008587(n-3) (k=4), A008590(n-4) (k=5), A008595(n-5) (k=6), A008603(n-6) (k=7).
Diagonals: A000045(n+1) (k=n), A006355(n+1) (k=n-1), A022086(n-1) (k=n-2), A022087(n-2) (k=n-3), A022088(n-3) (k=n-4), A022089(n-4) (k=n-5), A022090(n-5) (k=n-6).

Programs

  • Magma
    A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >;
    [A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
    
  • Mathematica
    (* First program *)
    T[n_, 1] := n;
    T[n_ /; n > 1, 2] := 2 n - 2;
    T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
    (* Second program *)
    A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1];
    Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
  • SageMath
    def A119457(n,k): return (n-k+1)*fibonacci(k+1)
    print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025

Formula

T(n, k) = (n-k+1)*T(k,k) for 1 <= k < n, with T(n, n) = A000045(n+1).
From G. C. Greubel, Apr 15 2025: (Start)
T(n, k) = (n-k+1)*Fibonacci(k+1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n)*A023652(floor((n+1)/2)) + (1+(-1)^n)*A001891(floor(n/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n)*A112469(floor((n-1)/2)) + (1+(-1)^n)*A355020(floor((n-2)/2)). (End)

A280154 a(n) = 5*Lucas(n).

Original entry on oeis.org

10, 5, 15, 20, 35, 55, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6820, 11035, 17855, 28890, 46745, 75635, 122380, 198015, 320395, 518410, 838805, 1357215, 2196020, 3553235, 5749255, 9302490, 15051745, 24354235, 39405980, 63760215, 103166195, 166926410, 270092605, 437019015
Offset: 0

Author

Bruno Berselli, Dec 27 2016

Keywords

Comments

Fibonacci sequence beginning 10, 5.
After 5, the sequence provides the 3rd column of the rectangular array in A213590.
After 5, all terms belong to A191921 because a(n) = Lucas(n+4) - 3*Lucas(n-1).
From G. C. Greubel, Dec 27 2016: (Start)
{a(n) mod 3} yields (1,2,0,2,2,1,0,1), repeated, and is given as A082115.
{a(n) mod 6} yields (4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1) and is given as A082117. (End)

Crossrefs

Subsequence of A084176.
Cf. A022088: 5*Fibonacci(n).
Cf. A022359: Lucas(n+5) + Lucas(n-5).
Cf. sequences with formula Fibonacci(n+k) + Fibonacci(n-k): A006355 (k=0, without the initial 1), A000032 (k=1), A022086 (k=2), A022112 (k=3, with an initial 4), A022090 (k=4), this sequence (k=5), A022352 (k=6).

Programs

  • Magma
    [5*Lucas(n): n in [0..40]];
    
  • Maple
    F := n -> combinat:-fibonacci(n):
    seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
  • Mathematica
    Table[5 LucasL[n], {n, 0, 40}]
  • PARI
    vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
    
  • Sage
    def A280154():
        x, y = 10, 5
        while True:
            yield x
            x, y = y, x + y
    a = A280154(); print([next(a) for  in range(39)]) # _Peter Luschny, Dec 29 2016

Formula

G.f.: 5*(2 - x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2) for n>1.
a(n) = Fibonacci(n+5) + Fibonacci(n-5), with Fibonacci(-k) = -(-1)^k*Fibonacci(k) for the negative indices.

A126714 Dual Wythoff array read along antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 5, 10, 11, 9, 8, 16, 18, 14, 12, 13, 26, 29, 23, 19, 15, 21, 42, 47, 37, 31, 24, 17, 34, 68, 76, 60, 50, 39, 27, 20, 55, 110, 123, 97, 81, 63, 44, 32, 22, 89, 178, 199, 157, 131, 102, 71, 52, 35, 25, 144, 288, 322, 254, 212, 165, 115, 84, 57, 40, 28
Offset: 1

Author

R. J. Mathar, Feb 12 2007

Keywords

Comments

The dual Wythoff array is the dispersion of the sequence w given by w(n)=2+floor(n*x), where x=(golden ratio), so that w=2+A000201(n). For a discussion of dispersions, see A191426. - Clark Kimberling, Jun 03 2011

Examples

			Array starts
1 2 3 5 8 13 21 34 55 89 144
4 6 10 16 26 42 68 110 178 288 466
7 11 18 29 47 76 123 199 322 521 843
9 14 23 37 60 97 157 254 411 665 1076
12 19 31 50 81 131 212 343 555 898 1453
15 24 39 63 102 165 267 432 699 1131 1830
17 27 44 71 115 186 301 487 788 1275 2063
20 32 52 84 136 220 356 576 932 1508 2440
22 35 57 92 149 241 390 631 1021 1652 2673
25 40 65 105 170 275 445 720 1165 1885 3050
28 45 73 118 191 309 500 809 1309 2118 3427
		

References

  • Clark Kimberling, "Stolarsky Interspersions," Ars Combinatoria 39 (1995) 129-138. See page 135 for the dual Wythoff array and other dual arrays. - Clark Kimberling, Oct 29 2009

Crossrefs

First three rows identical to A035506. First column is A007066. First row is A000045. 2nd row is essentially A006355. 3rd row is essentially A000032. 4th row essentially A000285. 5th row essentially A013655 or A001060. 6th row essentially A022086 or A097135. 7th row essentially A022120. 8th row essentially A022087. 9th row essentially A022130. 10th row essentially A022088. 11th row essentially A022095. 12th row essentially A022089 etc.
Cf. A035513 (Wythoff array).

Programs

  • Maple
    Tn1 := proc(T,nmax,row) local n,r,c,fnd; n := 1; while true do fnd := false; for r from 1 to row do for c from 1 to nmax do if T[r,c] = n then fnd := true; fi; od; if T[r,nmax] < n then RETURN(-1); fi; od; if fnd then n := n+1; else RETURN(n); fi; od; end; Tn2 := proc(T,nmax,row,ai1) local n,r,c,fnd; for r from 1 to row do for c from 1 to nmax do if T[r,c]+1 = ai1 then RETURN(T[r,c+1]+1); fi; od; od; RETURN(-1); end; T := proc(nmax) local a,col,row; a := array(1..nmax,1..nmax); for col from 1 to nmax do a[1,col] := combinat[fibonacci](col+1); od; for row from 2 to nmax do a[row,1] := Tn1(a,nmax,row-1); a[row,2] := Tn2(a,nmax,row-1,a[row,1]); for col from 3 to nmax do a[row,col] := a[row,col-2]+a[row,col-1]; od; od; RETURN(a); end; nmax := 12; a := T(nmax); for d from 1 to nmax do for row from 1 to d do printf("%d, ",a[row,d-row+1]); od; od;
  • Mathematica
    (* program generates the dispersion array T of the complement of increasing sequence f[n] *)
    r = 40; r1 = 12;  (* r=# rows of T, r1=# rows to show *)
    c = 40; c1 = 12;   (* c=# cols of T, c1=# cols to show *)
    x = GoldenRatio; f[n_] := Floor[n*x + 2]
    (* f(n) is complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];  (* the array T *)
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1,10}]]
    (* Dual Wythoff array, A126714 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* array as a sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011; added here by Clark Kimberling, Jun 03 2011 *)

A192750 Define a pair of sequences c_n, d_n by c_0=0, d_0=1 and thereafter c_n = c_{n-1}+d_{n-1}, d_n = c_{n-1}+4*n+2; sequence here is d_n.

Original entry on oeis.org

1, 6, 11, 21, 36, 61, 101, 166, 271, 441, 716, 1161, 1881, 3046, 4931, 7981, 12916, 20901, 33821, 54726, 88551, 143281, 231836, 375121, 606961, 982086, 1589051, 2571141, 4160196, 6731341, 10891541, 17622886, 28514431, 46137321, 74651756
Offset: 0

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

Old definition was: constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined recursively by p(n,x) = x*p(n-1,x) + 4n+2 for n>0, with p(0,x)=1.
For discussions of polynomial reduction, see A192232 and A192744.

Crossrefs

Programs

  • Mathematica
    q = x^2; s = x + 1; z = 40;
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 4 n + 2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192750 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192751 *)
    LinearRecurrence[{2,0,-1},{1,6,11},40] (* Harvey P. Dale, Dec 03 2023 *)

Formula

G.f.: ( 1+4*x-x^2 ) / ( (x-1)*(x^2+x-1) ). The first differences are in A022088. - R. J. Mathar, May 04 2014
a(n) = 5*Fibonacci(n+2)-4. - Gerry Martens, Jul 04 2015
a(n) = A265752(A265750(n)). - Antti Karttunen, Dec 15 2015

Extensions

Entry revised by N. J. A. Sloane, Dec 15 2015

A192751 Define a pair of sequences c_n, d_n by c_0=0, d_0=1 and thereafter c_n = c_{n-1}+d_{n-1}, d_n = c_{n-1}+4*n+2; sequence here is c_n.

Original entry on oeis.org

0, 1, 7, 18, 39, 75, 136, 237, 403, 674, 1115, 1831, 2992, 4873, 7919, 12850, 20831, 33747, 54648, 88469, 143195, 231746, 375027, 606863, 981984, 1588945, 2571031, 4160082, 6731223, 10891419, 17622760, 28514301, 46137187, 74651618, 120788939
Offset: 0

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

Old definition was: coefficient of x in the reduction under x^2->x+1 of the polynomial p(n,x) defined recursively by p(n,x) = x*p(n-1,x) + 4n+2 for n>0, with p(0,x)=1.
For discussions of polynomial reduction, see A192232 and A192744.

Crossrefs

Programs

  • Mathematica
    (See A192750.)
    CoefficientList[Series[x (x^2-4x-1)/((x-1)^2(x^2+x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{3,-2,-1,1},{0,1,7,18},40] (* Harvey P. Dale, Feb 23 2022 *)

Formula

G.f.: x*(x^2-4*x-1)/((x-1)^2*(x^2+x-1)). First differences are in A192750. [Colin Barker, Nov 13 2012]
a(n) = 5*Fibonacci(n+3) - (4*n+10). - N. J. A. Sloane, Dec 15 2015
a(n) = A265753(A265750(n)). - Antti Karttunen, Dec 15 2015

Extensions

Description corrected by Antti Karttunen, Dec 15 2015
Entry revised by N. J. A. Sloane, Dec 15 2015

A229339 GCD of all sums of n consecutive Lucas numbers.

Original entry on oeis.org

1, 1, 2, 5, 1, 4, 1, 15, 2, 11, 1, 40, 1, 29, 2, 105, 1, 76, 1, 275, 2, 199, 1, 720, 1, 521, 2, 1885, 1, 1364, 1, 4935, 2, 3571, 1, 12920, 1, 9349, 2, 33825, 1, 24476, 1, 88555, 2, 64079, 1, 231840, 1, 167761, 2, 606965, 1, 439204, 1, 1589055, 2, 1149851, 1, 4160200, 1, 3010349, 2
Offset: 1

Author

Alonso del Arte, Sep 23 2013

Keywords

Comments

The sum of two consecutive Lucas number is the sum of four consecutive Fibonacci numbers, which is verified easily enough with the identity L(n) = F(n - 1) + F(n + 1). Therefore a(1) = a(2) = A210209(4).

Examples

			a(3) = 2 because any sum of three consecutive Lucas numbers is an even number.
a(4) = 5 because all sums of four consecutive Lucas numbers are divisible by 5.
a(5) = 1 because some sums of five consecutive Lucas numbers are coprime.
		

Crossrefs

Cf. A210209, A022112, A022088, A022098, A106291 (Pisano periods of the Lucas sequence).

Programs

  • Mathematica
    a[n_] := a[n] = If[n <= 14, {1, 1, 2, 5, 1, 4, 1, 15, 2, 11, 1, 40, 1, 29}[[n]], 3*a[n - 4] + a[n - 6] - a[n - 8] - 3*a[n - 10] + a[n - 14]]; Array[a, 64] (* Giovanni Resta, Oct 04 2013 *)
    CoefficientList[Series[(x^12 - x^11 + 2 x^10 - 5 x^9 - 2 x^8 - x^7 - 6 x^6 + x^5 - 2 x^4 + 5 x^3 + 2 x^2 + x + 1) / (-x^14 + 3 x^10 + x^8 - x^6 - 3 x^4 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 09 2014 *)
    LinearRecurrence[{0,0,0,3,0,1,0,-1,0,-3,0,0,0,1},{1,1,2,5,1,4,1,15,2,11,1,40,1,29},70] (* Harvey P. Dale, Jul 21 2021 *)
    Table[GCD[LucasL[n + 1] - 2, LucasL[n] + 1], {n, 0, 50}] (* Horst H. Manninger, Dec 25 2021 *)
  • PARI
    Vec(x*(x^12 -x^11 +2*x^10 -5*x^9 -2*x^8 -x^7 -6*x^6 +x^5 -2*x^4 +5*x^3 +2*x^2 +x +1) / (-x^14 +3*x^10 +x^8 -x^6 -3*x^4 +1) + O(x^100)) \\ Colin Barker, Nov 09 2014

Formula

a(n) = 3*a(n-4) + a(n-6) - a(n-8) - 3*a(n-10) + a(n-14) for n > 14. - Giovanni Resta, Oct 04 2013
G.f.: x*(x^12 -x^11 +2*x^10 -5*x^9 -2*x^8 -x^7 -6*x^6 +x^5 -2*x^4 +5*x^3 +2*x^2 +x +1) / (-x^14 +3*x^10 +x^8 -x^6 -3*x^4 +1). - Colin Barker, Nov 09 2014
From Aba Mbirika, Jan 04 2022: (Start)
a(n) = gcd(L(n+1)-1, L(n+2)-3).
a(n) = Lcm_{A106291(m) divides n} m.
Proofs of these formulas are given in Theorems 15 and 25 of the Guyer-Mbirika paper. (End)

A354265 Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2.

Original entry on oeis.org

2, 3, 1, 4, 4, 3, 5, 7, 7, 4, 6, 10, 11, 11, 7, 7, 13, 15, 18, 18, 11, 8, 16, 19, 25, 29, 29, 18, 9, 19, 23, 32, 40, 47, 47, 29, 10, 22, 27, 39, 51, 65, 76, 76, 47, 11, 25, 31, 46, 62, 83, 105, 123, 123, 76, 12, 28, 35, 53, 73, 101, 134, 170, 199, 199, 123
Offset: 0

Author

Peter Luschny, May 29 2022

Keywords

Comments

The definition declares the Lucas numbers for all integers n and k. It gives the classical Lucas numbers as L(0, n) = Lucas(n), where Lucas(n) = A000032(n) is extended in the usual way for negative n.

Examples

			Array starts:
[0]  2,  1,  3,  4,   7,  11,  18,  29,  47,   76, ... A000032
[1]  3,  4,  7, 11,  18,  29,  47,  76, 123,  199, ... A000032 (shifted)
[2]  4,  7, 11, 18,  29,  47,  76, 123, 199,  322, ... A000032 (shifted)
[3]  5, 10, 15, 25,  40,  65, 105, 170, 275,  445, ... A022088
[4]  6, 13, 19, 32,  51,  83, 134, 217, 351,  568, ... A022388
[5]  7, 16, 23, 39,  62, 101, 163, 264, 427,  691, ... A190995
[6]  8, 19, 27, 46,  73, 119, 192, 311, 503,  814, ... A206420
[7]  9, 22, 31, 53,  84, 137, 221, 358, 579,  937, ... A206609
[8] 10, 25, 35, 60,  95, 155, 250, 405, 655, 1060, ...
[9] 11, 28, 39, 67, 106, 173, 279, 452, 731, 1183, ...
		

Programs

  • Julia
    const FibMem = Dict{Int,Tuple{BigInt,BigInt}}()
    function FibRec(n::Int)
        get!(FibMem, n) do
            n == 0 && return (BigInt(0), BigInt(1))
            a, b = FibRec(div(n, 2))
            c = a * (b * 2 - a)
            d = a * a + b * b
            iseven(n) ? (c, d) : (d, c + d)
        end
    end
    function Lucas(n, k)
        k ==  0 && return BigInt(n + 2)
        k == -1 && return BigInt(2 * n - 1)
        k <   0 && return (-1)^k * Lucas(1 - n, -k - 2)
        a, b = FibRec(k)
        c, d = FibRec(k - 1)
        n * (2 * a + b) + 2 * c + d
    end
    for n in -6:6
        println([Lucas(n, k) for k in -6:6])
    end
  • Maple
    phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
    L := (n, k) -> phi^(k+1)*(n - psi) + psi^(k+1)*(n - phi):
    seq(seq(simplify(L(n-k, k)), k = 0..n), n = 0..10);
  • Mathematica
    L[n_, k_] := With[{c = Pi/2 + I*ArcCsch[2]},
                 I^k Sec[c] (n Cos[c (k + 1)] - I Cos[c k]) ];
    Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
    (* Alternative: *)
    L[n_, k_] := n*LucasL[k + 1] + LucasL[k];
    Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm

Formula

Functional equation extends Cassini's theorem:
L(n, k) = (-1)^k*L(1 - n, -k - 2).
L(n, k) = n*Lucas(k + 1) + Lucas(k).
L(n, k) = L(n, k-1) + L(n, k-2).
L(n, k) = i^k*sec(c)*(n*cos(c*(k + 1)) - i*cos(c*k)), where c = Pi/2 + i*arccsch(2), for all n, k in Z.
Using the generalized Fibonacci numbers F(n, k) = A352744(n, k),
L(n, k) = F(n, k+1) + F(n, k) + F(n, k-1) + F(n, k-2).
Showing 1-10 of 16 results. Next