cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131534 Period 3: repeat [1, 2, 1].

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Paul Curtz, Aug 26 2007

Keywords

Comments

Partial sums of A106510. Inverse binomial transform of A024495 (without leading zeros). - Philippe Deléham, Nov 26 2008
a(n) = A130196(n) - A022003(n) = A080425(n) - A130196(n)+2 = A153727(n)/A130196(n). - Reinhard Zumkeller, Nov 12 2009
Continued fraction expansion of A177346, (1+sqrt(10))/3. - Klaus Brockhaus, May 07 2010
From Daniel Forgues, May 04 2016: (Start)
a(n) = GCD of terms of the sequence S_n = {F_i+F_{i+1}+F_{i+2}+...+F_{i+2n}, i >= 0}, where F_i denotes a Fibonacci number. See A210209.
a(n) = GCD of terms of the sequence S_n = {L_i+L_{i+1}+L_{i+2}+...+L_{i+2n}, i >= 0}, where L_i denotes a Lucas number. See A229339. (End)

Crossrefs

Programs

Formula

G.f.: (x+1)^2/((1-x)*(x^2+x+1)). - R. J. Mathar, Nov 14 2007
a(n) = 4/3 + (2/3)*cos(2*Pi*(n+2)/3). - Jaume Oliver Lafont, May 09 2008
a(n) = A101825(n+1). - R. J. Mathar, Jun 13 2008
a(n) = gcd(F(n)^2+F(n+1)^2, F(n)+F(n+1)). - Gary Detlefs, Dec 29 2010
a(n) = 2 - ((n+2)^2 mod 3). - Gary Detlefs, Oct 13 2011
a(n) = ceiling(n*4/3) - ceiling((n-1)*4/3). - Tom Edgar, Jul 22 2014
a(n) = 2 - abs(3*floor(n/3)+1-n). - Mikael Aaltonen, Jan 02 2015
a(n) = 1+[3|(2n+1)], using Iverson bracket. - Daniel Forgues, May 04 2016
a(n) = a(n-3) for n>2. - Wesley Ivan Hurt, Jul 05 2016
E.g.f.: (4*exp(x) - exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/3. - Stefano Spezia, Aug 04 2025

A210209 GCD of all sums of n consecutive Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 4, 1, 3, 2, 11, 1, 8, 1, 29, 2, 21, 1, 76, 1, 55, 2, 199, 1, 144, 1, 521, 2, 377, 1, 1364, 1, 987, 2, 3571, 1, 2584, 1, 9349, 2, 6765, 1, 24476, 1, 17711, 2, 64079, 1, 46368, 1, 167761, 2, 121393, 1, 439204, 1, 317811, 2, 1149851, 1, 832040
Offset: 0

Views

Author

Alonso del Arte, Mar 18 2012

Keywords

Comments

Early on in the Posamentier & Lehmann (2007) book, the fact that the sum of any ten consecutive Fibonacci numbers is a multiple of 11 is presented as an interesting property of the Fibonacci numbers. Much later in the book a proof of this fact is given, using arithmetic modulo 11. An alternative proof could demonstrate that 11*F(n + 6) = Sum_{i=n..n+9} F(i).

Examples

			a(3) = 2 because all sums of three consecutive Fibonacci numbers are divisible by 2 (F(n) + F(n-1) + F(n-2) = 2F(n)), but since the GCD of 3 + 5 + 8 = 16 and 5 + 8 + 13 = 26 is 2, no number larger than 2 divides all sums of three consecutive Fibonacci numbers.
a(4) = 1 because the GCD of 1 + 1 + 2 + 3 = 7 and 1 + 2 + 3 + 5 = 11 is 1, so the sums of four consecutive Fibonacci numbers have no factors in common.
		

References

  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, New York (2007) p. 33.

Crossrefs

Cf. A000045, A000071, sum of the first n Fibonacci numbers, A001175 (Pisano periods). Cf. also A229339.
Bisections give: A005013 (even part), A131534 (odd part).
Sums of m consecutive Fibonacci numbers: A055389 (m = 3, ignoring the initial 1); A000032 (m = 4, these are the Lucas numbers); A013655 (m = 5); A022087 (m = 6); A022096 (m = 7); A022379 (m = 8).

Programs

  • Maple
    a:= n-> (Matrix(7, (i, j)-> `if`(i=j-1, 1, `if`(i=7, [1, 0, -3, -1, 1, 3, 0][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 1, 4, 3, 11, 8>>, <<1, 2, 1, 1, 2, 1, 1>>))[1, 1]: seq(a(n), n=0..80);  # Alois P. Heinz, Mar 18 2012
  • Mathematica
    Table[GCD[Fibonacci[n + 1] - 1, Fibonacci[n]], {n, 1, 50}] (* Horst H. Manninger, Dec 19 2021 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,1,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,1,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,1,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,1,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,1,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,1,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,1; 1,0,0,0,-3,0,-1,0,1,0,3,0,0,0]^n*[0;1;1;2;1;1;4;1;3;2;11;1;8;1])[1,1] \\ Charles R Greathouse IV, Jun 20 2017

Formula

G.f.: -x*(x^12-x^11+2*x^10-x^9-2*x^8-x^7-6*x^6+x^5-2*x^4+x^3+2*x^2+x+1) / (x^14-3*x^10-x^8+x^6+3*x^4-1) = -1/(x^4+x^2-1) + (x^2+1)/(x^4-x^2-1) + (x+2)/(6*(x^2+x+1)) + (x-2)/(6*(x^2-x+1)) - 2/(3*(x+1)) - 2/(3*(x-1)). - Alois P. Heinz, Mar 18 2012
a(n) = gcd(Fibonacci(n+1)-1, Fibonacci(n)). - Horst H. Manninger, Dec 19 2021
From Aba Mbirika, Jan 21 2022: (Start)
a(n) = gcd(F(n+1)-1, F(n+2)-1).
a(n) = Lcm_{A001175(m) divides n} m.
Proofs of these formulas are given in Theorems 15 and 25 of the Guyer-Mbirika paper. (End)

Extensions

More terms from Alois P. Heinz, Mar 18 2012
Showing 1-2 of 2 results.