A094739 Numbers m such that 4^k*m, for integer k >= 0, are numbers having a unique partition into three squares.
1, 2, 3, 5, 6, 10, 11, 13, 14, 19, 21, 22, 30, 35, 37, 42, 43, 46, 58, 67, 70, 78, 91, 93, 115, 133, 142, 163, 190, 235, 253, 403, 427
Offset: 1
Examples
The unique partitions of m*4^k into three squares are, for m = 1: 1 = 1^2 + 0^2 + 0^2; 4 = 2^2 + 0^2 + 0^2; 16 = 4^2 + 0^2 + 0^2; ... for m = 163: 163 = 9^2 + 9^2 + 1^2; 163*4 = 18^2 + 18^2 + 2^2; 163*16 = 36^2 + 36^2 + 4^2; ...
Links
- Steven Arno, The imaginary quadratic fields of class number 4, Acta Arithmetica 60.4 (1992) 321 - 334.
- Irving Kaplansky, Integers Uniquely Represented by Certain Ternary Forms, in "The Mathematics of Paul Erdős I", Ronald. L. Graham and Jaroslav Nešetřil (Eds.), Springer, 1997, pp. 86 - 94.
- D. H. Lehmer, On the Partition of Numbers into Squares, The American Mathematical Monthly, Vol. 55, No.8, October 1948, pp. 476-481.
Crossrefs
Programs
-
Mathematica
lim=100; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && n
0&]
Extensions
Keyword full added by Wolfdieter Lang, Aug 27 2020
Comments