A094757 Least positive k <= n such that n*pi(k) = k*pi(n), where pi(n) is the number of primes <= n (A000720).
1, 2, 3, 2, 5, 2, 7, 2, 9, 10, 11, 12, 13, 14, 10, 16, 17, 18, 19, 10, 21, 22, 23, 16, 25, 26, 27, 28, 29, 27, 31, 32, 27, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 40, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 56, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1
Examples
a(15) = 10 as 15*pi(10) = 15*4 = 60 = 10*pi(15) = 10*6. For k in {2, 4, 6, 8} we have pi(k)/k = 1/2 and for no k < 2 this holds. So for all these values a(k) = 2. - _David A. Corneth_, Nov 15 2019
Links
- David A. Corneth, Table of n, a(n) for n = 1..10007
Programs
-
Mathematica
Table[SelectFirst[Range[n], n PrimePi[#] == # PrimePi[n] &], {n, 72}] (* Michael De Vlieger, Dec 14 2019 *)
-
PARI
{m=72;pi=vector(m,n,omega(n!));for(n=1,m,k=1;while(n*pi[k]!=k*pi[n],k++);print1(k,","))}
-
PARI
first(n) = {n = nextprime(n); my(v = vector(n), t = -1, q = 1, res = vector(n), m); v[1] = [0, 1]; v[2] = [1/2, 2]; forprime(p = 2, n, t++; for(c = q, p - 1, v[c] = [t/c, c]; ); q = p ); v[n] = [t/n,n]; v = vecsort(v); res[1] = 1; for(i = 2, #v, if(v[i-1][1] != v[i][1], m = v[i][2]; ); res[v[i][2]] = m ); res } \\ David A. Corneth, Nov 15 2019
Extensions
Edited and extended by Klaus Brockhaus, Jun 01 2004
Comments