cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094766 Trajectory of 11 under repeated application of the map n -> n + 2*square excess of n (see A094765).

Original entry on oeis.org

11, 15, 27, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, 241, 273, 307, 343, 381, 421, 463, 507, 553, 601, 651, 703, 757, 813, 871, 931, 993, 1057, 1123, 1191, 1261, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1981, 2071, 2163, 2257, 2353, 2451, 2551, 2653
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2004

Keywords

Comments

The trajectory of 3 gives A002061 and 5 gives essentially the same trajectory as 3.

Crossrefs

Programs

  • Maple
    f:= n -> 3*n - 2*floor(sqrt(n))^2:
    g:= proc(n) option remember; f(procname(n-1)) end proc:
    g(0):= 11:
    seq(g(n),n=0..100); # Robert Israel, Oct 23 2015
  • Mathematica
    NestList[3*#-2*Floor[Sqrt[#]]^2&,11,50] (* Harvey P. Dale, Feb 26 2022 *)
  • PARI
    lista(nn) = {print1(n=11, ", "); for (k=2, nn, m = 3*n - 2*sqrtint(n)^2; print1(m, ", "); n = m;);} \\ Michel Marcus, Oct 23 2015
    
  • PARI
    Vec(4+2*x+6*x^2+(7-8*x+3*x^2)/(1-x)^3 + O(x^100)) \\ Altug Alkan, Oct 23 2015

Formula

Numbers given satisfy a(n) = n^2 + 5n + 7, for n>2. - Ralf Stephan, Dec 04 2004
From Robert Israel, Oct 23 2015: (Start)
This is because for x = m^2 + 5*m + 7, (m+2)^2 < x < (m+3)^2 so A094765(x) = x + 2*(x-(m+2)^2) = m^2 + 7*m + 13 = (m+1)^2 + 5*(m+1) + 7.
Similarly, for any positive integer k, the trajectory of k^2 + k + 1 is n^2 + (2k+1) n + k^2 + k + 1 for n >= 0.
G.f.: 4 + 2*x + 6*x^2 + (7-8*x+3*x^2)/(1-x)^3. (End)