A094768 Square spiral of sums of selected preceding terms, starting at 1 (a spiral Fibonacci-like sequence).
1, 1, 2, 3, 6, 9, 16, 25, 42, 68, 110, 179, 291, 470, 763, 1236, 2005, 3241, 5252, 8502, 13770, 22272, 36058, 58355, 94455, 152878, 247333, 400279, 647722, 1048180, 1696193, 2744373, 4440857, 7185700, 11627320, 18814256, 30443581, 49257837
Offset: 1
Keywords
Examples
Clockwise constructed spiral begins . 13770--22272--36058--58355--94455 | | 8502 16-----25-----42-----68 | | | | | | 5252 9 1------1 110 | | | | | | | | 3241 6------3------2 179 | | | | 2005---1236----763----470----291 . where a(2) = a(1) = 1, a(3) = a(2) + a(1) = 2, a(4) = a(3) + a(2) = 3, a(5) = a(4) + a(3) + a(1) = 6, a(6) = a(5) + a(4) = 9, a(7) = a(6) + a(5) + a(1) = 16.
Links
- Klaus Brockhaus, Table of n, a(n) for n = 1..729
Programs
-
PARI
{m=5; h=2*m-1; A=matrix(h, h); print1(A[m, m]=1, ","); pj=m; pk=m; T=[[1, 0], [0, -1], [ -1, 0], [0, 1]]; for(n=1, (h-2)^2-1, g=sqrtint(n); r=(g+g%2)\2; q=4*r^2; d=n-q; if(n<=q-2*r, j=d+3*r; k=r, if(n<=q, j=r; k=-d-r, if(n<=q+2*r, j=r-d; k=-r, j=-r; k=d-3*r))); j=j+m; k=k+m; s=A[pj, pk]; for(c=1, 4, v=[pj, pk]; v+=T[c]; s=s+A[v[1], v[2]]); A[j, k]=s; print1(s, ","); pj=j; pk=k)} \\ Klaus Brockhaus, Aug 27 2008
Extensions
Edited and extended beyond a(14) by Klaus Brockhaus, Aug 27 2008
Comments