cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094768 Square spiral of sums of selected preceding terms, starting at 1 (a spiral Fibonacci-like sequence).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 25, 42, 68, 110, 179, 291, 470, 763, 1236, 2005, 3241, 5252, 8502, 13770, 22272, 36058, 58355, 94455, 152878, 247333, 400279, 647722, 1048180, 1696193, 2744373, 4440857, 7185700, 11627320, 18814256, 30443581, 49257837
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jun 10 2004

Keywords

Comments

Enter 1 into center position of the spiral. Repeat: Add to the number in the present position the numbers in all those already filled positions that are horizontally or vertically adjacent to it, go to next position of the spiral and enter the sum into it.
a(1) = 1, a(n) = a(n-1) + Sum_{i < n-1 and a(i) is adjacent to a(n-1)} a(i).
Here only four positions are considered adjacent, eight however in A094767.
Clockwise and counterclockwise construction of the spiral result in the same sequence.

Examples

			Clockwise constructed spiral begins
.
  13770--22272--36058--58355--94455
      |
      |
   8502     16-----25-----42-----68
      |      |                    |
      |      |                    |
   5252      9      1------1    110
      |      |             |      |
      |      |             |      |
   3241      6------3------2    179
      |                           |
      |                           |
   2005---1236----763----470----291
.
where
  a(2) = a(1) = 1,
  a(3) = a(2) + a(1) = 2,
  a(4) = a(3) + a(2) = 3,
  a(5) = a(4) + a(3) + a(1) = 6,
  a(6) = a(5) + a(4) = 9,
  a(7) = a(6) + a(5) + a(1) = 16.
		

Crossrefs

Programs

  • PARI
    {m=5; h=2*m-1; A=matrix(h, h); print1(A[m, m]=1, ","); pj=m; pk=m; T=[[1, 0], [0, -1], [ -1, 0], [0, 1]]; for(n=1, (h-2)^2-1, g=sqrtint(n); r=(g+g%2)\2; q=4*r^2; d=n-q; if(n<=q-2*r, j=d+3*r; k=r, if(n<=q, j=r; k=-d-r, if(n<=q+2*r, j=r-d; k=-r, j=-r; k=d-3*r))); j=j+m; k=k+m; s=A[pj, pk]; for(c=1, 4, v=[pj, pk]; v+=T[c]; s=s+A[v[1], v[2]]); A[j, k]=s; print1(s, ","); pj=j; pk=k)} \\ Klaus Brockhaus, Aug 27 2008

Extensions

Edited and extended beyond a(14) by Klaus Brockhaus, Aug 27 2008