A094769 Square spiral of sums of selected preceding terms, starting at 0 followed by 1 (a spiral Fibonacci-like sequence).
0, 1, 1, 2, 4, 6, 12, 18, 37, 56, 94, 189, 285, 475, 952, 1434, 2392, 3830, 7666, 11518, 19202, 30732, 61482, 92281, 153874, 246248, 400178, 800450, 1200967, 2001985, 3203426, 5205696, 10411867, 15619275, 26034003, 41658056, 67695885, 109356333
Offset: 1
Keywords
Examples
Clockwise constructed spiral begins . 19202--30732--61482--92281-153874 | | 11518 12-----18-----37-----56 | | | | | | 7666 6 0------1 94 | | | | | | | | 3830 4------2------1 189 | | | | 2392---1434----952----475----285 . where a(1) = 0, a(2) = 1, a(3) = a(2) + a(1) = 1, a(4) = a(3) + a(2) + a(1) = 2, a(5) = a(4) + a(3) + a(2) + a(1) = 4, a(6) = a(5) + a(4) + a(1) = 6, a(7) = a(6) + a(5) + a(4) + a(1) = 12.
Links
- Klaus Brockhaus, Table of n, a(n) for n = 1..729
Programs
-
PARI
{m=5; h=2*m-1; A=matrix(h, h); print1(A[m, m]=0, ","); print1(A[m, m+1]=1, ","); pj=m; pk=m+1; T=[[1, 0], [1, -1], [0, -1], [ -1, -1], [ -1, 0], [ -1, 1], [0, 1], [1, 1]]; for(n=2, (h-2)^2-1, g=sqrtint(n); r=(g+g%2)\2; q=4*r^2; d=n-q; if(n<=q-2*r, j=d+3*r; k=r, if(n<=q, j=r; k=-d-r, if(n<=q+2*r, j=r-d; k=-r, j=-r; k=d-3*r))); j=j+m; k=k+m; s=A[pj, pk]; for(c=1, 8, v=[pj, pk]; v+=T[c]; s=s+A[v[1], v[2]]); A[j, k]=s; print1(s, ","); pj=j; pk=k)} \\ Klaus Brockhaus, Aug 27 2008
Extensions
Edited and extended beyond a(12) by Klaus Brockhaus, Aug 27 2008
Comments