A094790 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2*n, s(0) = 1, s(2n) = 3.
1, 3, 9, 28, 89, 286, 924, 2993, 9707, 31501, 102256, 331981, 1077870, 3499720, 11363361, 36896355, 119801329, 388991876, 1263047761, 4101088878, 13316149700, 43237262993, 140390505643, 455845099957, 1480119728920
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1956
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
Programs
-
Magma
[n le 3 select 3^(n-1) else 5*Self(n-1) -6*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Feb 12 2023
-
Maple
with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n+1),n=0..nmax); # Johannes W. Meijer, May 29 2010
-
Mathematica
f[n_]:= FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[3Pi*k/7](2Cos[Pi*k/7] )^(2n), {k,6}]]]; Table[f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *) LinearRecurrence[{5,-6,1},{1,3,9},30] (* Harvey P. Dale, Nov 19 2019 *)
-
PARI
Vec(x*(1-2*x)/(1-5*x+6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Jun 14 2015
-
SageMath
@CachedFunction def a(n): # a = A094790 if (n<4): return 3^(n-1) else: return 5*a(n-1) - 6*a(n-2) + a(n-3) [a(n) for n in range(1,41)] # G. C. Greubel, Feb 12 2023
Formula
a(n) = (2/7)*Sum_{k=1..6} sin(Pi*k/7)*sin(3*Pi*k/7)*(2*cos(Pi*k/7))^(2n).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3).
G.f.: x*(1-2*x)/(1 - 5*x + 6*x^2 - x^3).
a(n) = rightmost term in M^n * [1,0,0] where M = the 3 X 3 matrix [2,1,1; 1,2,0; 1,0,1]. E.g., M^3 * [1,0,0] = [19,14,9]; right term = 9 = a(3). - Gary W. Adamson, Apr 04 2006
Comments