A094791 Triangle read by rows giving coefficients of polynomials arising in successive differences of (n!)_{n>=0}.
1, 1, 0, 1, 1, 1, 1, 3, 5, 2, 1, 6, 17, 20, 9, 1, 10, 45, 100, 109, 44, 1, 15, 100, 355, 694, 689, 265, 1, 21, 196, 1015, 3094, 5453, 5053, 1854, 1, 28, 350, 2492, 10899, 29596, 48082, 42048, 14833, 1, 36, 582, 5460, 32403, 124908, 309602, 470328, 391641, 133496
Offset: 0
Examples
D_3(n) = n!*(n^3 + 3*n^2 + 5*n + 2). D_4(n) = n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9). Table begins: 1 1 0 1 1 1 1 3 5 2 1 6 17 20 9 1 10 45 100 109 44 1 15 100 355 694 689 265 ...
Crossrefs
Programs
-
Maple
with(LREtools): A094791_row := proc(n) delta(x!,x,n); simplify(%/x!); seq(coeff(%,x,n-j),j=0..n) end: seq(print(A094791_row(n)),n=0..9); # Peter Luschny, Jan 09 2015
-
Mathematica
d[0][n_] := n!; d[k_][n_] := d[k][n] = d[k - 1][n + 1] - d[k - 1][n] // FullSimplify; row[k_] := d[k][n]/n! // FullSimplify // CoefficientList[#, n]& // Reverse; Array[row, 10, 0] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
Formula
T(n, n) = A000166(n).
T(2, k) = A000217(k).
Sum_{k=0..n} T(n,n-k)*x^k = Sum_{i=0..n} der(n,i)*binomial( n+x, i) (an analog of Worpitzky's identity). - Olivier Gérard, Jul 31 2011
The n-th row polynomial R(n,x) = Sum {k = 0..n} T(n,k)*x^k is P-recursive in the variable x: x*R(n,x) = (x+n+1)*R(n,x-1) - R(n,x-2). - _Peter Bala, Jul 25 2021
Extensions
Edited and T(0,0) corrected according to the author's definition by Olivier Gérard, Jul 31 2011
Comments