cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098461 Expansion of E.g.f.: 1/sqrt(1-2*x-3*x^2).

Original entry on oeis.org

1, 1, 6, 42, 456, 6120, 101520, 1980720, 44634240, 1139080320, 32488646400, 1023985670400, 35345049062400, 1325988036172800, 53721616851302400, 2337607853957376000, 108727934847307776000, 5383304681800421376000, 282682783375630589952000
Offset: 0

Views

Author

Paul Barry, Sep 08 2004

Keywords

Crossrefs

Main diagonal of A094796.

Programs

  • Mathematica
    Table[(n!/2^n) Sum[Binomial[n, k] Binomial[2 (n - k), n] 3^k, {k, 0, Floor[n/2]}], {n, 0, 17}] (* Michael De Vlieger, Sep 14 2016 *)

Formula

a(n) = (n!/2^n)*A098453(n);
a(n) = (n!/2^n)*Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2*(n-k), n)*3^k.
D-finite with recurrence: a(n) +(1-2n)*a(n-1) -3(n-1)^2*a(n-2)=0. - R. J. Mathar, Dec 11 2011
a(n) = n! * A002426(n). - Anton Zakharov, Sep 14 2016

A329533 First differences of A051924, or second differences of Central binomial coefficients A000984.

Original entry on oeis.org

3, 10, 36, 132, 490, 1836, 6930, 26312, 100386, 384540, 1478048, 5697720, 22019556, 85284920, 330961950, 1286562960, 5009003250, 19528599420, 76231136520, 297910080600, 1165429743660, 4563490674600, 17884841191620, 70148829799152, 275344923755700, 1081512966189656, 4250730282412320
Offset: 0

Views

Author

M. F. Hasler, Nov 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[#, 2] &@ Array[Binomial[2 #, #] &, 29, 0] (* Michael De Vlieger, Nov 15 2019 *)
  • PARI
    C=vector(30,n,binomial(2*n--,n));C=C[^1]-C[^-1];C=C[^1]-C[^-1]

Formula

a(n) = A051924(n) - A051924(n-1) = A000984(n+2) - 2*A000984(n+1) + A000984(n).
a(n) = 3*(3*n+2)*(n+1)*binomial(2*n+4,n+2)/(4*(2*n+1)*(2*n+3)). - Alois P. Heinz, Sep 13 2024
Showing 1-2 of 2 results.