A111200 Solution of Diophantine equation (1/x^2 + 1/y^2 = 1/z^2); x values in increasing order.
15, 20, 30, 40, 45, 60, 65, 75, 80, 90, 100, 105, 120, 130, 135, 136, 140, 150, 156, 160, 165, 175, 180, 195, 200, 210, 220, 225, 240, 255, 260, 270, 272, 280, 285, 300, 312, 315, 320, 325, 330, 340, 345, 350, 360, 369, 375, 380, 390, 400, 405, 408, 420, 435
Offset: 1
Keywords
Examples
a(1) = 15 because 1/15^2 + 1/20^2 = 1/12^2 (smallest solution); a(2)= 20 as 1/20^2 + 1/15^2 = 1/12^2.
Crossrefs
Cf. A094807.
Programs
-
Maple
recPy:=proc(n) local x,y,z,Rx2,Ry2; for x from 1 by 1 to n do Rx2:=1/x^2; for y from 1 by 1 to x^2 do Ry2:=1/y^2; for z from 1 by 1 to x do if (Rx2 + Ry2 =1/z^2) then print(x);fi; od; od; od; end: # convert into set
Extensions
More terms from Vladeta Jovovic, Oct 25 2005
Comments