cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A111200 Solution of Diophantine equation (1/x^2 + 1/y^2 = 1/z^2); x values in increasing order.

Original entry on oeis.org

15, 20, 30, 40, 45, 60, 65, 75, 80, 90, 100, 105, 120, 130, 135, 136, 140, 150, 156, 160, 165, 175, 180, 195, 200, 210, 220, 225, 240, 255, 260, 270, 272, 280, 285, 300, 312, 315, 320, 325, 330, 340, 345, 350, 360, 369, 375, 380, 390, 400, 405, 408, 420, 435
Offset: 1

Views

Author

Keywords

Comments

Similar to integral Pythagorean triangles, but with reciprocal of integers: 1/x and 1/y are the legs and 1/z is the hypotenuse. Properties:
1) x*y is congruent to 0 mod z;
2) x = u*v *(u^2+v^2) * m /2 or x = (u^2-v^2)*(u^2+v^2)*m/4; y = (u^2-v^2)*(u^2+v^2)*m/4 or y = u*v *(u^2+v^2)*m /2; z = (u^2-v^2)*u*v*m /2; u and v are odd and relatively prime, u > v, m is an integer.
To use the equations: set n, evaluate (2*n^2+2*n+1), derive m = (2*n^2+2*n+1)*integer, then evaluate x, y, z.
3) Primitive integral solution, i.e., those solutions in which there is no factor common to x, y and z, are (15, 20, 12), (65, 156, 60), (136,255,120), (175, 600, 168), (369,1640, 360), (671, 3660, 660), ...
Primitive integral solution are those where m = 1.
4) If the triad (a, b, c) is a solution of a Pythagorean triangle, i.e., a^2 + b^2 = c^2, then (x = a*c, y = b*c, z= a*b) is a solution of (1/x^2 + 1/y^2 = 1/z^2). For Pythagorean triads see for example http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html [broken link]
5) First multiple solutions (more values for y and z given x ) are x = 60,120,180,195. Multiple solution can be derived by equations at point 2.
6) No prime is in the sequence.
Related topics: the Diophantine equation (1/x^i + 1/y^i = 1/z^i) has no integral solutions for i>2, as it is easy to demonstrate by means of the Fermat-Wiles theorem.

Examples

			a(1) = 15 because 1/15^2 + 1/20^2 = 1/12^2 (smallest solution); a(2)= 20 as 1/20^2 + 1/15^2 = 1/12^2.
		

Crossrefs

Cf. A094807.

Programs

  • Maple
    recPy:=proc(n) local x,y,z,Rx2,Ry2; for x from 1 by 1 to n do Rx2:=1/x^2; for y from 1 by 1 to x^2 do Ry2:=1/y^2; for z from 1 by 1 to x do if (Rx2 + Ry2 =1/z^2) then print(x);fi; od; od; od; end: # convert into set

Extensions

More terms from Vladeta Jovovic, Oct 25 2005
Showing 1-1 of 1 results.