A094831 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 3.
1, 2, 6, 19, 62, 207, 703, 2417, 8382, 29242, 102431, 359790, 1266103, 4460939, 15730497, 55500634, 195890270, 691566411, 2441886670, 8623112591, 30453261927, 107553444913, 379864424726, 1341658806066, 4738726458775
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1825
- Index entries for linear recurrences with constant coefficients, signature (6,-9,1).
Crossrefs
Cf. A188048.
Programs
-
Mathematica
CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 6 x + 9 x^2 - x^3), {x, 0, 24}], x] (* Michael De Vlieger, Feb 12 2022 *)
-
PARI
Vec((1-4*x+3*x^2)/(1-6*x+9*x^2-x^3) + O(x^30)) \\ Michel Marcus, Jun 21 2015
Formula
a(n) = (2/9) * Sum_{r=1..8} sin(r*Pi/3)^2*(2*cos(r*Pi/9))^(2*n).
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: (1-4*x+3*x^2)/(1-6*x+9*x^2-x^3).
Comments