A094847 Let p = n-th odd prime. Then a(n) = least positive integer congruent to 5 modulo 8 such that Legendre(a(n), q) = -1 for all odd primes q <= p.
5, 53, 173, 173, 293, 437, 9173, 9173, 24653, 74093, 74093, 74093, 170957, 214037, 214037, 214037, 2004917, 44401013, 71148173, 154554077, 154554077, 163520117, 163520117, 163520117, 261153653, 261153653, 1728061733
Offset: 1
Keywords
Links
- Michael John Jacobson, Jr., Computational Techniques in Quadratic Fields, Master's thesis, University of Manitoba, Winnipeg, Manitoba, 1995.
- Michael John Jacobson Jr. and Hugh C. Williams, New quadratic polynomials with high densities of prime values, Math. Comp. 72 (2003), 499-519.
- D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
Crossrefs
Programs
-
PARI
isok(m, oddpn) = {forprime(q=3, oddpn, if (kronecker(m, q) != -1, return (0));); return (1);} a(n) = {oddpn = prime(n+1); m = 5; while(! isok(m, oddpn), m += 8); m;} \\ Michel Marcus, Oct 17 2017
Comments