cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094864 a(0)=1, a(1)=2, a(2)=6, a(3)=18; for n >= 4, a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).

Original entry on oeis.org

1, 2, 6, 18, 53, 154, 443, 1264, 3582, 10092, 28291, 78962, 219541, 608318, 1680438, 4629414, 12722033, 34882954, 95451407, 260698732, 710802606, 1934955072, 5259642751, 14277467618, 38707663273, 104816737274, 283521290598, 766112145594, 2068131437357
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Programs

  • Magma
    I:=[1,2,6,18]; [n le 4 select I[n] else 6*Self(n-1)-11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jul 30 2019
  • Mathematica
    Table[((n - 1)*LucasL[2n-1] + 2*Fibonacci[2n+3])/5, {n, 0, 28}] (* Rigoberto Florez, Jul 29 2019 *)
    LinearRecurrence[{6, -11, 6, -1}, {1, 2, 6, 18}, 40] (* Vincenzo Librandi, Jul 30 2019 *)
  • PARI
    Vec(-(2*x-1)*(x-1)^2/(x^2-3*x+1)^2 + O(x^40)) \\ Michel Marcus, Feb 14 2016
    

Formula

O.g.f: -(2*x-1)*(x-1)^2/(x^2-3*x+1)^2 = (-1-2*x)/(x^2-3*x+1)+(2-5*x)/(x^2-3*x+1)^2. - R. J. Mathar, Dec 02 2007
a(n) = (2*F(2*n+3)+(n-1)*L(2*n-1))/5, where F(n) is the n-th Fibonacci number and L(n) is the n-th Lucas number. - Rigoberto Florez, Jul 29 2019