cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094865 Expansion of x^3/((1-3*x+x^2)*(1-5*x+5*x^2)).

Original entry on oeis.org

0, 0, 0, 1, 8, 43, 196, 820, 3264, 12597, 47652, 177859, 657800, 2417416, 8844448, 32256553, 117378336, 426440955, 1547491404, 5610955132, 20332248992, 73645557469, 266668876540, 965384509651, 3494279574288, 12646311635088, 45764967830976, 165605867248465
Offset: 0

Views

Author

Herbert Kociemba, Jun 15 2004

Keywords

Comments

With a different offset, number of sequences (s(0), s(1), ..., s(2k+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2k+1, with s(0) = 1 and s(2n+1) = 8.

Crossrefs

Cf. A005024 is a truncated version.

Programs

  • Mathematica
    CoefficientList[Series[x^3/((1-3x+x^2)(1-5x+5x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,-21,20,-5},{0,0,0,1},30] (* Harvey P. Dale, Jun 07 2014 *)
  • PARI
    x='x+O('x^66); concat([0,0,0],Vec(x^3/((1-3*x+x^2)*(1-5*x+5*x^2)))) \\ Joerg Arndt, May 01 2013

Formula

a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(4*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
a(n) = A093129(n)/2 - A122367(n)/2. - R. J. Mathar, Jun 24 2011
a(n) = 2^(-2-n)*(-(3-sqrt(5))^n*(-1+sqrt(5)) + (5-sqrt(5))^n*(1+sqrt(5)) - (1+sqrt(5))*(3+sqrt(5))^n + (-1+sqrt(5))*(5+sqrt(5))^n)/sqrt(5). - Colin Barker, Apr 27 2016

Extensions

Edited by N. J. A. Sloane, Aug 09 2008