cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217778 Expansion of (1-x)^2*(1-3*x)/((1-3*x+x^2)*(1-5*x+5*x^2)).

Original entry on oeis.org

1, 3, 10, 34, 117, 407, 1429, 5055, 17986, 64278, 230473, 828391, 2982825, 10754459, 38811802, 140165322, 506449789, 1830590295, 6618524221, 23933966743, 86562282258, 313102489406, 1132598701585, 4097213146599, 14822370816337, 53623952036787
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A diagonal of the square array A217770.

Crossrefs

Cf. A217770.

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^2*(1-3*x)/((1-3*x+x^2)*(1-5*x+5*x^2)))); // Bruno Berselli, Mar 28 2013
    
  • Mathematica
    LinearRecurrence[{8, -21, 20, -5}, {1, 3, 10, 34}, 26] (* Bruno Berselli, Mar 28 2013 *)
    CoefficientList[Series[(1-x)^2(1-3x)/((1-3x+x^2)(1-5x+5x^2)),{x,0,30}],x] (* Harvey P. Dale, Sep 26 2023 *)
  • Maxima
    makelist(expand(((3+sqrt(5))*(5+sqrt(5))^n-(3-sqrt(5))*(5-sqrt(5))^n+(1+sqrt(5))*(3+sqrt(5))^n-(1-sqrt(5))*(3-sqrt(5))^n)/(4*2^n*sqrt(5))), n, 0, 25); /* Bruno Berselli, Mar 28 2013 */

Formula

G.f.: (1-5*x+7*x^2-3*x^3)/(1-8*x+21*x^2-20*x^3+5*x^4).
a(n) = A081567(n) - A094865(n).
a(n) = A217770(n+1,n).
a(n) = 8*a(n-1) -21*a(n-2) +20*a(n-3) -5*a(n-4) for n>3, a(0)=1, a(1)=3, a(2)=10, a(3)=34.
a(n) = ((3+r)*(5+r)^n-(3-r)*(5-r)^n+(1+r)*(3+r)^n-(1-r)*(3-r)^n)/(4*r*2^n), where r=sqrt(5). [Bruno Berselli, Mar 28 2013]

A005024 Number of walks of length 2n+8 in the path graph P_9 from one end to the other.

Original entry on oeis.org

8, 43, 196, 820, 3264, 12597, 47652, 177859, 657800, 2417416, 8844448, 32256553, 117378336, 426440955, 1547491404, 5610955132, 20332248992, 73645557469, 266668876540, 965384509651, 3494279574288, 12646311635088, 45764967830976
Offset: 1

Views

Author

Keywords

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005023. Truncated version of A094865.

Programs

  • Magma
    I:=[8, 43, 196, 820]; [n le 4 select I[n] else 8*Self(n-1)-21*Self(n-2)+20*Self(n-3)-5*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 08 2013
  • Maple
    a:=k->sum(binomial(8+2*k,10*j+k-2),j=ceil((2-k)/10)..floor((10+k)/10))-sum(binomial(8+2*k,10*j+k-1),j=ceil((1-k)/10)..floor((9+k)/10)): seq(a(k),k=1..28);
    A005024:=-(-8+21*z-20*z**2+5*z**3)/(5*z**2-5*z+1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(-5 z^3 + 20 z^2 - 21 z + 8)/((z^2 - 3 z + 1) (5 z^2 - 5 z + 1)), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
    CoefficientList[Series[(1 / x) (1 / (1 - 8 x + 21 x^2 - 20 x^3 + 5 x^4) - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)
  • PARI
    x='x+O('x^66); Vec(-1+1/((1-3*x+x^2)*(1-5*x+5*x^2))) \\ Joerg Arndt, May 01 2013
    

Formula

From Emeric Deutsch, Apr 02 2004: (Start)
G.f. (assuming a(0)=1): 1/(1 - 8x + 21x^2 - 20x^3 + 5x^4) - 1.
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4). (End)
a(k) = sum(binomial(8+2k, 10j+k-2)-binomial(8+2k, 10j+k-1), j=-infinity..infinity) (a finite sum).

Extensions

Better definition from Emeric Deutsch, Apr 02 2004

A094825 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 7.

Original entry on oeis.org

1, 7, 35, 153, 624, 2444, 9333, 35055, 130207, 479941, 1759616, 6427032, 23412105, 85121783, 309062619, 1121050449, 4063463728, 14721293860, 53313308477, 193023319071, 698715633111, 2528895064637, 9152032060800, 33118656195888
Offset: 3

Views

Author

Herbert Kociemba, Jun 15 2004

Keywords

Crossrefs

Cf. A094865 (partial sums).

Programs

  • Mathematica
    LinearRecurrence[{8,-21,20,-5},{1,7,35,153},30] (* Harvey P. Dale, Jan 16 2015 *)

Formula

a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(7*r*Pi/10)*(2*cos(r*Pi/10))^(2n).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
G.f.: x^3*(1-x)/( (1-3*x+x^2)*(1-5*x+5*x^2) ).
a(n) = -A001906(n)/2 + A020876(n)/10. - R. J. Mathar, Jun 24 2011

A217593 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=1 or if k-n >= 9, T(0,k) = 1 for k = 0..8, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 1, 7, 20, 28, 14, 0, 0, 0, 0, 0, 8, 27, 48, 42, 0, 0, 0, 0, 0, 0, 8, 35, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 43, 110, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 43, 153, 275, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 196, 428, 572, 429, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 18 2013

Keywords

Examples

			Square array begins :
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 0, 0, ...
0, 0, 2, 5, 9, 14, 20, 27, 35, 43, 43, 0, 0, ...
0, 0, 0, 5, 14, 28, 75, 110, 153, 196, 196, 0, 0, ....
0, 0, 0, 0, 14, 42, 90, 165, 275, 428, 624, 820, 820, 0, 0, ...
...
Square array, read by rows, with 0 omitted:
1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 7, 8, 8
2, 5, 9, 14, 20, 27, 35, 43, 43
5, 14, 28, 48, 75, 110, 153, 196, 196
14, 42, 90, 165, 275, 428, 624, 820, 820
42, 132, 297, 572, 1000, 1624, 2444, 3264, 3264
132, 429, 1001, 2001, 3625, 6069, 9333, 12597, 12597
429, 1430, 3431, 7056, 13125, 22458, 35055, 47652, 47652
...
		

References

  • A hexagon arithmetic of E. Lucas.

Formula

T(n,n) = A033191(n).
T(n,n+1) = A033191(n+1).
T(n,n+2) = A033190(n+1).
T(n,n+3) = A094667(n+1).
T(n,n+4) = A093131(n+1) = A030191(n).
T(n,n+5) = A094788(n+2).
T(n,n+6) = A094825(n+3).
T(n,n+7) = T(n,n+8) = A094865(n+3).
Sum_{k, 0<=k<=n} T(n-k,k) = A178381(n).
Showing 1-4 of 4 results.