cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A223968 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 5 or if k-n >= 6, T(4,0) = T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 0, 0, 6, 15, 20, 15, 5, 0, 0, 6, 21, 35, 35, 20, 0, 0, 0, 0, 27, 56, 70, 55, 20, 0, 0, 0, 0, 27, 83, 126, 125, 75, 0, 0, 0, 0, 0, 0, 110, 209, 251, 200, 75, 0, 0, 0, 0, 0, 0, 110, 319, 460, 451, 275, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 30 2013

Keywords

Examples

			Square array begins:
1....1....1....1....1....1....0....0....0....0....0....0
1....2....3....4....5....6....6....0....0....0....0....0
1....3....6...10...15...21...27...27....0....0....0....0
1....4...10...20...35...56...83..110..110....0....0....0
1....5...15...35...70..126..209..319..429..429....0....0
0....5...20...55..125..251..460..779.1208.1637.1637....0
0....0...20...75..200..451..911.1690.2898.4535.6172.6172
...
Square array, read by diagonals, with 0 omitted:
1, 5, 20, 75, 275, 1001, 3639, 13243, 48280, ...
1, 5, 20, 75, 275, 1001, 3639, 13243, 48280, ...
1, 4, 15, 55, 200, 726, 2638, 9604, 35037, ...
1, 3, 10, 35, 125, 451, 1637, 5965, 21794, ...
1, 2, 6, 20, 70, 251, 911, 3327, 12190, 44744, ...
1, 3, 10, 35, 126, 460, 1690, 6225, 22950, ...
1, 4, 15, 56, 209, 779, 2898, 10760, 39882, ...
1, 5, 21, 83, 319, 1208, 4535, 16932, 62986, ...
1, 6, 27, 110, 429, 1637, 6172, 23104, 86090, ...
1, 6, 27, 110, 429, 1637, 6172, 23104, 86090, ...
		

Crossrefs

Formula

sum(T(n-k,k), 0<=k<=n) = A223940(n).
T(n,n+5) = T(n,n+4) = A221863(n).
T(n,n+3) = A221862(n).
T(n,n+2) = A221859(n).
T(n,n+1) = A216710(n).
T(n,n) = A224514(n).
T(n+1,n) = A224509(n).
T(n+2,n) = A220948(n).
T(n+3,n) = T(n+4,n) = A224422(n). - Philippe Deléham, Apr 13 2013

A217770 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 1, 5, 10, 10, 4, 0, 0, 6, 15, 20, 14, 0, 0, 0, 6, 21, 35, 34, 14, 0, 0, 0, 0, 27, 56, 69, 48, 0, 0, 0, 0, 0, 27, 83, 125, 117, 48, 0, 0, 0, 0, 0, 0, 110, 208, 242, 165, 0, 0, 0, 0, 0, 0, 0, 110, 318, 450, 407, 165
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
n=0: 1, 1,  1,  1,   1,   1,   0,   0,    0,    0,    0, 0, ...
n=1: 1, 2,  3,  4,   5,   6,   6,   0,    0,    0,    0, 0, ...
n=2: 1, 3,  6, 10,  15,  21,  27,  27,    0,    0,    0, 0, ...
n=3: 1, 4, 10, 20,  35,  56,  83, 110,  110,    0,    0, 0, ...
n=4: 0, 4, 14, 34,  69, 125, 208, 318,  428,  428,    0, 0, ...
n=5: 0, 0, 14, 48, 117, 242, 450, 768, 1196, 1624, 1624, 0, ...
...
Square array, read by rows, with 0 omitted:
...1,    1,     1,     1,     1,      1
...1,    2,     3,     4,     5,      6,      6
...1,    3,     6,    10,    15,     21,     27,     27
...1,    4,    10,    20,    35,     56,     83,    110,    110
...4,   14,    34,    69,   125,    208,    318,    428,    428
..14,   48,   117,   242,   450,    768,   1196,   1624,   1624
..48,  165,   407,   857,  1625,   2821,   4445,   6069,   6069
.165,  572,  1429,  3054,  5875,  10320,  16389,  22458,  22458
.572, 2001,  5055, 10930, 21250,  37639,  60097,  82555,  82555
2001, 7056, 17986, 39236, 76875, 136972, 219527, 302082, 302082
...
Triangle begins:
1
1, 1
1, 2,  1
1, 3,  3,  1
1, 4,  6,  4,  0
1, 5, 10, 10,  4,  0
0, 6, 15, 20, 14,  0, 0
0, 6, 21, 35, 34, 14, 0, 0
...
		

Crossrefs

Formula

T(n,n+4) = T(n,n+5) = A094788(n+2).
T(n,n+3) = A217783(n).
T(n,n+2) = A217779(n).
T(n,n+1) = A081567(n).
T(n,n) = A217782(n).
T(n+1,n) = A217778(n).
T(n+3,n) = T(n+2,n) = A094667(n+1).
Sum(T(n-k,k), k=0..n) = A217777(n).

A094788 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 6.

Original entry on oeis.org

1, 6, 27, 110, 428, 1624, 6069, 22458, 82555, 302082, 1101816, 4009616, 14567657, 52865230, 191684283, 694609494, 2515972324, 9110338728, 32981059485, 119377761602, 432046756571, 1563510554986, 5657752486512, 20472344560800
Offset: 2

Views

Author

Herbert Kociemba, Jun 15 2004

Keywords

Comments

Diagonal of the square array A217593. - Philippe Deléham, Mar 28 2013

Programs

  • Mathematica
    Drop[CoefficientList[Series[-x^2*(-1 + 2 x)/((x^2 - 3 x + 1) (5 x^2 - 5 x + 1)), {x, 0, 25}], x], 2] (* Michael De Vlieger, Aug 04 2021 *)
    LinearRecurrence[{8,-21,20,-5},{1,6,27,110},30] (* Harvey P. Dale, Aug 31 2021 *)
  • PARI
    Vec(x^2*(1-2*x)/(1-8*x+21*x^2-20*x^3+5*x^4)+O(x^66)) /* Joerg Arndt, Mar 29 2013 */

Formula

a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(3*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
G.f.: -x^2*(-1+2*x) / ( (x^2-3*x+1)*(5*x^2-5*x+1) ).
a(n+2) = A217593(n,n+5). - Philippe Deléham, Mar 28 2013
2*a(n) = A030191(n-1) - A001906(n). - R. J. Mathar, Nov 15 2019
Showing 1-3 of 3 results.