cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A217770 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 1, 5, 10, 10, 4, 0, 0, 6, 15, 20, 14, 0, 0, 0, 6, 21, 35, 34, 14, 0, 0, 0, 0, 27, 56, 69, 48, 0, 0, 0, 0, 0, 27, 83, 125, 117, 48, 0, 0, 0, 0, 0, 0, 110, 208, 242, 165, 0, 0, 0, 0, 0, 0, 0, 110, 318, 450, 407, 165
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
n=0: 1, 1,  1,  1,   1,   1,   0,   0,    0,    0,    0, 0, ...
n=1: 1, 2,  3,  4,   5,   6,   6,   0,    0,    0,    0, 0, ...
n=2: 1, 3,  6, 10,  15,  21,  27,  27,    0,    0,    0, 0, ...
n=3: 1, 4, 10, 20,  35,  56,  83, 110,  110,    0,    0, 0, ...
n=4: 0, 4, 14, 34,  69, 125, 208, 318,  428,  428,    0, 0, ...
n=5: 0, 0, 14, 48, 117, 242, 450, 768, 1196, 1624, 1624, 0, ...
...
Square array, read by rows, with 0 omitted:
...1,    1,     1,     1,     1,      1
...1,    2,     3,     4,     5,      6,      6
...1,    3,     6,    10,    15,     21,     27,     27
...1,    4,    10,    20,    35,     56,     83,    110,    110
...4,   14,    34,    69,   125,    208,    318,    428,    428
..14,   48,   117,   242,   450,    768,   1196,   1624,   1624
..48,  165,   407,   857,  1625,   2821,   4445,   6069,   6069
.165,  572,  1429,  3054,  5875,  10320,  16389,  22458,  22458
.572, 2001,  5055, 10930, 21250,  37639,  60097,  82555,  82555
2001, 7056, 17986, 39236, 76875, 136972, 219527, 302082, 302082
...
Triangle begins:
1
1, 1
1, 2,  1
1, 3,  3,  1
1, 4,  6,  4,  0
1, 5, 10, 10,  4,  0
0, 6, 15, 20, 14,  0, 0
0, 6, 21, 35, 34, 14, 0, 0
...
		

Crossrefs

Formula

T(n,n+4) = T(n,n+5) = A094788(n+2).
T(n,n+3) = A217783(n).
T(n,n+2) = A217779(n).
T(n,n+1) = A081567(n).
T(n,n) = A217782(n).
T(n+1,n) = A217778(n).
T(n+3,n) = T(n+2,n) = A094667(n+1).
Sum(T(n-k,k), k=0..n) = A217777(n).

A217593 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=1 or if k-n >= 9, T(0,k) = 1 for k = 0..8, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 1, 7, 20, 28, 14, 0, 0, 0, 0, 0, 8, 27, 48, 42, 0, 0, 0, 0, 0, 0, 8, 35, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 43, 110, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 43, 153, 275, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 196, 428, 572, 429, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 18 2013

Keywords

Examples

			Square array begins :
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 0, 0, ...
0, 0, 2, 5, 9, 14, 20, 27, 35, 43, 43, 0, 0, ...
0, 0, 0, 5, 14, 28, 75, 110, 153, 196, 196, 0, 0, ....
0, 0, 0, 0, 14, 42, 90, 165, 275, 428, 624, 820, 820, 0, 0, ...
...
Square array, read by rows, with 0 omitted:
1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 7, 8, 8
2, 5, 9, 14, 20, 27, 35, 43, 43
5, 14, 28, 48, 75, 110, 153, 196, 196
14, 42, 90, 165, 275, 428, 624, 820, 820
42, 132, 297, 572, 1000, 1624, 2444, 3264, 3264
132, 429, 1001, 2001, 3625, 6069, 9333, 12597, 12597
429, 1430, 3431, 7056, 13125, 22458, 35055, 47652, 47652
...
		

References

  • A hexagon arithmetic of E. Lucas.

Formula

T(n,n) = A033191(n).
T(n,n+1) = A033191(n+1).
T(n,n+2) = A033190(n+1).
T(n,n+3) = A094667(n+1).
T(n,n+4) = A093131(n+1) = A030191(n).
T(n,n+5) = A094788(n+2).
T(n,n+6) = A094825(n+3).
T(n,n+7) = T(n,n+8) = A094865(n+3).
Sum_{k, 0<=k<=n} T(n-k,k) = A178381(n).

A336602 a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), with initial terms a(0)=1, a(1)=7, a(2)=35, a(3)=154.

Original entry on oeis.org

1, 7, 35, 154, 632, 2487, 9529, 35875, 133471, 492538, 1807268, 6604891, 24069905, 87539199, 317907067, 1153307002, 4180842064, 15147734815, 54860799881, 198634274203, 719047882103, 2602540622106, 9418700937340, 34084040705539, 123335178991777, 446277892754167, 1614771692630099
Offset: 0

Views

Author

Peter Morris, Dec 20 2020

Keywords

Crossrefs

Extension of patterns illustrated in A001519, A033191, A033190, A094667, A030191, A094788.

Formula

G.f.: ( 1-x+x^3 ) / ( (5*x^2-5*x+1)*(x^2-3*x+1) ). - R. J. Mathar, May 05 2023

Extensions

Offset corrected by Jon E. Schoenfield, Feb 05 2021
Showing 1-3 of 3 results.