A094866 Number of truncated ST-pairs O(q^n).
1, 2, 4, 6, 11, 15, 26, 41, 67, 96, 138, 197, 300, 431, 636, 893, 1258, 1723, 2447, 3425, 4962, 6839, 10000, 13989, 21383, 30781, 48292, 70456, 110214, 159686, 253265, 374385, 591648, 876405, 1354888
Offset: 3
Keywords
References
- F. G. Garvan, Shifted and Shiftless Partition Identities, in Number Theory for the Millennium II (M. A. Bennett et al., eds.), AK Peters, Ltd. 2002, pp. 75-92.
Links
- F. G. Garvan, Shifted and shiftless partition identities (2001).
Programs
-
Mathematica
st[n_] := Select[Flatten[Table[{s, t}, {s, Subsets@Range[n - 1]}, {t, Subsets@Range[n - 2]}], 1], Normal[Product[1/(1-q^k) + O[q]^n, {k, First@#}] - q Product[1/(1-q^k) + O[q]^n, {k, Last@#}] - 1] == 0 &]; Table[Length@st[n], {n, 3, 9}] (* Andrey Zabolotskiy, Feb 27 2024 *)
Comments