cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094866 Number of truncated ST-pairs O(q^n).

Original entry on oeis.org

1, 2, 4, 6, 11, 15, 26, 41, 67, 96, 138, 197, 300, 431, 636, 893, 1258, 1723, 2447, 3425, 4962, 6839, 10000, 13989, 21383, 30781, 48292, 70456, 110214, 159686, 253265, 374385, 591648, 876405, 1354888
Offset: 3

Views

Author

Barry Cipra, Jun 15 2004

Keywords

Comments

A truncated ST-pair O(q^n) consists of a subset S of {1, 2, ..., n-1} and a subset T of {1, 2, ..., n-2} such that (Product_{k in S} 1/(1-q^k)) - q (Product_{k in T} 1/(1-q^k)) = 1 + O(q^n). - Andrey Zabolotskiy, Feb 27 2024

References

  • F. G. Garvan, Shifted and Shiftless Partition Identities, in Number Theory for the Millennium II (M. A. Bennett et al., eds.), AK Peters, Ltd. 2002, pp. 75-92.

Programs

  • Mathematica
    st[n_] := Select[Flatten[Table[{s, t}, {s, Subsets@Range[n - 1]}, {t, Subsets@Range[n - 2]}], 1], Normal[Product[1/(1-q^k) + O[q]^n, {k, First@#}] - q Product[1/(1-q^k) + O[q]^n, {k, Last@#}] - 1] == 0 &];
    Table[Length@st[n], {n, 3, 9}] (* Andrey Zabolotskiy, Feb 27 2024 *)