A094886 Decimal expansion of phi*Pi, where phi = (1+sqrt(5))/2.
5, 0, 8, 3, 2, 0, 3, 6, 9, 2, 3, 1, 5, 2, 5, 9, 8, 1, 5, 8, 0, 9, 5, 0, 9, 0, 1, 3, 2, 4, 2, 1, 9, 8, 8, 4, 1, 8, 3, 1, 8, 3, 9, 2, 9, 3, 2, 2, 1, 1, 5, 4, 1, 2, 0, 4, 8, 2, 3, 3, 2, 8, 0, 9, 2, 4, 9, 9, 7, 9, 1, 4, 3, 4, 5, 2, 6, 9, 8, 6, 0, 1, 8, 6, 6, 0, 8, 8, 6, 2, 0, 3, 5, 3, 9, 4, 2, 1, 5
Offset: 1
Examples
5.0832036923152598158...
Links
Programs
-
Mathematica
First@ RealDigits[N[GoldenRatio Pi, 120]] (* Michael De Vlieger, May 24 2016 *)
-
PARI
{ default(realprecision, 20080); phi=(1+sqrt(5))/2; x=phi*Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b094886.txt", n, " ", d)); } \\ Harry J. Smith, Apr 27 2009
-
PARI
Pi*(1+sqrt(5))/2 \\ Michel Marcus, May 25 2016
Formula
Equals the nested radical sqrt(Pi^2+sqrt(Pi^4+sqrt(Pi^8+...))). For a proof, see A094885. - Stanislav Sykora, May 24 2016
Equals Integral_{x=0..Pi/2} tan(x)^(4/5) dx. - Clark Kimberling, Nov 18 2020
Comments