A094931 A measure of the excess of the mean of the set of 4 consecutive primes over the 2nd of the set.
5, 6, 8, 4, 8, 4, 12, 10, 4, 14, 4, 4, 12, 14, 8, 4, 14, 4, 6, 14, 8, 16, 14, 2, 4, 8, 4, 20, 28, 0, 10, 8, 20, 0, 16, 10, 8, 14, 8, 8, 20, 0, 8, 12, 34, 16, 0, 4, 12, 10, 8, 24, 8, 12, 8, 4, 14, 4, 10, 32, 22, 0, 4, 20, 30, 8, 16, 0, 12, 16, 16, 10, 10, 8, 16, 14, 8, 22, 14, 4, 20, 0, 14, 8
Offset: 4
Crossrefs
Cf. A034963.
Programs
-
Maple
A094931 := proc(n) local p3,p2,p1,p0 ; p3 := ithprime(n-3) ; p2 := ithprime(n-2) ; p1 := ithprime(n-1) ; p0 := ithprime(n) ; max(p3-3*p2+p1+p0,0) ; end proc: seq(A094931(n),n=4..50) ; # R. J. Mathar, Nov 15 2019
-
Mathematica
a=Table[If[(Prime[n-3]+Prime[n-2]+Prime[n-1]+Prime[n])/4-Prime[n-2]>0, 4*((Prime[n-3]+Prime[n-2]+Prime[n-1]+Prime[n])/4-Prime[n-2]), 0], {n, 4, 204}] If[#<=0,0,#]&/@(4(Total[#]/4-#[[2]])&/@Partition[Prime[Range[90]],4,1]) (* Harvey P. Dale, Mar 02 2015 *)
Comments