A094966 Left-hand neighbors of Fibonacci numbers in Stern's diatomic series.
0, 1, 1, 3, 3, 8, 8, 21, 21, 55, 55, 144, 144, 377, 377, 987, 987, 2584, 2584, 6765, 6765, 17711, 17711, 46368, 46368, 121393, 121393, 317811, 317811, 832040, 832040, 2178309, 2178309, 5702887, 5702887, 14930352, 14930352, 39088169, 39088169
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
Crossrefs
Cf. A001906.
Programs
-
Magma
[Fibonacci(n)*(1+(-1)^n)/2 + Fibonacci(n+1)*(1-(-1)^n)/2: n in [0..40]]; // Vincenzo Librandi, Mar 29 2016
-
Mathematica
CoefficientList[Series[x (1 + x)/(1 - 3 x^2 + x^4), {x, 0, 38}], x] (* Michael De Vlieger, Mar 28 2016 *)
-
PARI
concat(0, Vec(x*(1+x)/(1-3*x^2+x^4) + O(x^50))) \\ Colin Barker, Mar 28 2016
Formula
G.f.: x*(1+x) / (1-3*x^2+x^4).
a(n) = Fibonacci(n)*(1+(-1)^n)/2 + Fibonacci(n+1)*(1-(-1)^n)/2.
a(n) = (2^(-2-n)*((1-sqrt(5))^n*(-3+sqrt(5)) - (-1-sqrt(5))^n*(-1+sqrt(5)) - (-1+sqrt(5))^n - sqrt(5)*(-1+sqrt(5))^n + 3*(1+sqrt(5))^n + sqrt(5)*(1+sqrt(5))^n))/sqrt(5). - Colin Barker, Mar 28 2016
Comments