cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A094967 Right-hand neighbors of Fibonacci numbers in Stern's diatomic series.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 13, 34, 34, 89, 89, 233, 233, 610, 610, 1597, 1597, 4181, 4181, 10946, 10946, 28657, 28657, 75025, 75025, 196418, 196418, 514229, 514229, 1346269, 1346269, 3524578, 3524578, 9227465, 9227465, 24157817, 24157817, 63245986, 63245986, 165580141, 165580141
Offset: 0

Views

Author

Paul Barry, May 26 2004

Keywords

Comments

Fibonacci(2*n+1) repeated. a(n) is the right neighbor of Fibonacci(n+2) in A049456 and A002487 (starts 2,2,5,...). A000045(n+2) = A094966(n) + a(n).
Diagonal sums of A109223. - Paul Barry, Jun 22 2005
The Fi2 sums, see A180662, of triangle A065941 equal the terms of this sequence. - Johannes W. Meijer, Aug 11 2011
a(n) is the last term of (n+1)-th row in Wythoff array A003603. -Reinhard Zumkeller, Jan 26 2012

Crossrefs

Programs

  • GAP
    List([0..50], n -> Fibonacci(n)*(1-(-1)^n)/2 + Fibonacci(n+1)*(1+(-1)^n)/2); # G. C. Greubel, Nov 18 2018
  • Magma
    [IsEven(n) select Fibonacci(n+1) else Fibonacci(n): n in [0..70]]; // Vincenzo Librandi, Nov 18 2018
    
  • Maple
    A094967 := proc(n) combinat[fibonacci](2*floor(n/2)+1) ; end proc: seq(A094967(n), n=0..37);
  • Mathematica
    LinearRecurrence[{0,3,0,-1},{1,1,2,2},40] (* Harvey P. Dale, Apr 05 2015 *)
    f[n_]:=If[OddQ@n, (Fibonacci[n]), Fibonacci[n+1]]; Array[f, 100, 0] (* Vincenzo Librandi, Nov 18 2018 *)
    Table[Fibonacci[n, 0]*Fibonacci[n] + LucasL[n, 0]*Fibonacci[n + 1]/2, {n, 0, 50}] (* G. C. Greubel, Nov 18 2018 *)
  • PARI
    vector(50, n, n--; fibonacci(n)*(1-(-1)^n)/2 + fibonacci(n+1)*(1+(-1)^n)/2) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    [fibonacci(n)*(1-(-1)^n)/2 + fibonacci(n+1)*(1+(-1)^n)/2 for n in range(50)] # G. C. Greubel, Nov 18 2018
    

Formula

G.f.: (1+x-x^2-x^3)/(1-3*x^2+x^4).
a(n) = Fibonacci(n)*(1-(-1)^n)/2 + Fibonacci(n+1)*(1+(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2)+k, 2*k). - Paul Barry, Jun 22 2005
Starting (1, 2, 2, 5, 5, 13, 13, ...) = A133080 * A000045, where A000045 starts with "1". - Gary W. Adamson, Sep 08 2007
a(n) = Fibonacci(n+1)^(4*k+3) mod Fibonacci(n+2), for any k>-1, n>0. - Gary Detlefs, Nov 29 2010

A056014 a(n) = (Fibonacci(2n-1) - Fibonacci(n+1))/2.

Original entry on oeis.org

0, 0, 0, 1, 4, 13, 38, 106, 288, 771, 2046, 5401, 14212, 37324, 97904, 256621, 672336, 1760997, 4611642, 12075526, 31617520, 82781215, 216732890, 567428401, 1485570024, 3889310328, 10182407328, 26657986681, 69791674108
Offset: 0

Views

Author

Asher Auel, Jun 06 2000

Keywords

Comments

With a(0)=0, a(1)=1, a(2)=1, a(3)=2, this recurrence produces a(n)=A000045(n) (Fibonacci numbers).
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 1, s(n) = 4. - Herbert Kociemba, Jun 16 2004

Crossrefs

a(1-2n)=A059512(2n), a(-2n)=A027994(2n-1).

Programs

  • Magma
    I:=[0, 0, 0, 1]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012
  • Mathematica
    Table[(Fibonacci[2n-1]-Fibonacci[n+1])/2,{n,0,40}]  (* Harvey P. Dale, Mar 24 2011 *)
    LinearRecurrence[{4,-3,-2,1},{0,0, 0,1},40] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n)=(fibonacci(2*n-1)-fibonacci(n+1))/2
    

Formula

a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4), a(0)=a(1)=a(2)=0, a(3)=1.
Convolution of Fibonacci numbers F(n) with F(2n). - Benoit Cloitre, Jun 07 2004
G.f.: x^3/((1 - x - x^2)*(1 - 3*x + x^2)). - Herbert Kociemba, Jun 16 2004
Binomial transform of x^3/(1-3x^2+x^4), or (essentially) F(2n) with interpolated zeros. a(n)=sum{k=0..n, binomial(n, k)((3/2-sqrt(5)/2)^(k/2)((sqrt(5)/20+1/4)(-1)^k-sqrt(5)/20-1/4)+ (sqrt(5)/2+3/2)^(k/2)((sqrt(5)/20-1/4)(-1)^k-sqrt(5)/20+1/4))}. - Paul Barry, Jul 26 2004
Convolution of the powers of 2 (A000079) with the number of positive rational knots with 2n+1 crossings (A051450), with three leading zeros. - Graeme McRae, Jun 28 2006
a(n) = (A001519(n) - A000045(n+1))/2. - R. J. Mathar, Jun 24 2011
a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A094966(k-1) (Othsuka, 2024). - Amiram Eldar, Feb 29 2024

A124377 Riordan array (1/(1-x-x^2),x/(1+x)).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 2, -1, 1, 5, 1, 3, -2, 1, 8, 4, -2, 5, -3, 1, 13, 4, 6, -7, 8, -4, 1, 21, 9, -2, 13, -15, 12, -5, 1, 34, 12, 11, -15, 28, -27, 17, -6, 1, 55, 22, 1, 26, -43, 55, -44, 23, -7, 1, 89, 33, 21
Offset: 0

Views

Author

Paul Barry, Oct 29 2006

Keywords

Comments

First column is F(n+1). Second column is A008346. Row sums are F(n+2). Diagonal sums are A094966(n+1). Product of A007318 and A124377 is the Riordan array ((1-x)/(1-3x+x^2),x), the sequence array for F(2n+1).

Examples

			Triangle begins
1,
1, 1,
2, 0, 1,
3, 2, -1, 1,
5, 1, 3, -2, 1,
8, 4, -2, 5, -3, 1,
13, 4, 6, -7, 8, -4, 1,
21, 9, -2, 13, -15, 12, -5, 1
		

Crossrefs

Formula

Number triangle T(n,k)=sum{j=0..n-k, C(j-k,n-k-j)}*[k<=n]
T(n,k)=T(n-1,k-1)+2*T(n-2,k)-T(n-2,k-1)+T(n-3,k)-T(n-3,k-1), T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 12 2014
T(n,0)=A000045(n+1), T(n,n)=1, T(n,k)=T(n-1,k-1)-T(n-1,k) for 0Philippe Deléham, Jan 12 2014

A140833 Sum of Fibonacci numbers between F(-n)....F(n), inclusive.

Original entry on oeis.org

0, 2, 2, 6, 6, 16, 16, 42, 42, 110, 110, 288, 288, 754, 754, 1974, 1974, 5168, 5168, 13530, 13530, 35422, 35422, 92736, 92736, 242786, 242786, 635622, 635622, 1664080, 1664080, 4356618, 4356618, 11405774, 11405774, 29860704, 29860704, 78176338, 78176338
Offset: 0

Views

Author

Carey W. Strutz (cwstrutz(AT)excite.com), Jul 18 2008

Keywords

Comments

a(2n)/a(2n+1) converges to ((((sqrt 5)-1)/2)^2).

Examples

			a(3) = 2+(-1)+1+0+1+1+2=6.
G.f. = 2*x + 2*x^2 + 6*x^3 + 6*x^4 + 16*x^5 + 16*x^6 + 42*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> 2*(<<0|1>, <1|1>>^(ceil(n/2)*2))[1,2]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Nov 02 2016
  • Mathematica
    a[ n_] := 2 Fibonacci[ n + Mod[n, 2]]; (* Michael Somos, Nov 01 2016 *)
    LinearRecurrence[{0,3,0,-1},{0,2,2,6},50] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    {a(n) = 2 * fibonacci(n + n%2)}; /* Michael Somos, Nov 01 2016 */

Formula

a(2n-1) = a(2n).
a(n) = 3*a(n-2) - a(n-4).
G.f.: 2x(1+x)/((1-x-x^2)(1+x-x^2)). a(n)=2*A094966(n) = A000045(n+2)-A039834(n-1). - R. J. Mathar, Oct 30 2008
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Nov 01 2016
a(n) = 2*A000045(ceiling(n/2)*2). - Alois P. Heinz, Nov 02 2016

Extensions

a(21)-a(22) corrected by Matthew House, Nov 01 2016
Showing 1-4 of 4 results.