cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095100 Integers m of the form 4k+3 for which all sums Sum_{i=1..u} J(i/m) (with u ranging from 1 to (m-1)) are nonnegative, where J(i/m) is Jacobi symbol of i and m.

Original entry on oeis.org

3, 7, 11, 15, 23, 27, 31, 35, 39, 47, 55, 59, 63, 71, 75, 79, 83, 87, 95, 103, 111, 119, 131, 135, 143, 151, 159, 167, 171, 175, 183, 191, 199, 215, 231, 239, 243, 251, 255, 263, 271, 279, 287, 295, 299, 303, 311, 319, 327, 335, 343, 351, 359, 363
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Comments

Integers whose Jacobi-vector forms a valid Motzkin-path.

Crossrefs

Subset of A095102. Complement of A095101 in A004767.
Cf. A095090.

Programs

  • Mathematica
    isMotzkin[n_, k_] := Module[{s = 0, r = True}, Do[s += JacobiSymbol[i, n]; If[s < 0, r = False; Break[]], {i, 1, k}]; r]; A095100[n_] := Select[4*Range[0, n+1]+3, isMotzkin[#, Quotient[#, 2]] &]; A095100[90] (* Jean-François Alcover, Oct 08 2013, translated from Sage *)
  • PARI
    isok(m) = {if(m%4<3, return(0)); my(s=0); for(i=1, m-1, if((s+=kronecker(i, m))<0, return(0))); 1; } \\ Jinyuan Wang, Jul 20 2020
  • Sage
    def is_Motzkin(n, k):
        s = 0
        for i in range(1, k + 1) :
            s += jacobi_symbol(i, n)
            if s < 0: return False
        return True
    def A095100_list(n):
        return [m for m in range(3, n + 1, 4) if is_Motzkin(m, m // 2)]
    A095100_list(363) # Peter Luschny, Aug 08 2012
    

Formula

a(n) = 4*A095274(n) + 3.