A095126 Expansion of x*(4+5*x-x^2)/ (1-2*x-3*x^2+x^3).
4, 13, 37, 109, 316, 922, 2683, 7816, 22759, 66283, 193027, 562144, 1637086, 4767577, 13884268, 40434181, 117753589, 342925453, 998677492, 2908377754, 8469862531, 24666180832, 71833571503, 209195822971, 609226179619
Offset: 1
Examples
a(6) = 922 = 2*316 + 3*109 - 37 = 2*a(5) + 3*a(4) - a(3). a(5) = 316 since M^5 * [1 1 1] = [202 316 69] = [A095125(6), a(n), A095125(5)]
References
- R. Aldrovandi, "Special Matrices of Mathematical Physics", World Scientific, 2001, Section 13.3.1, "Inverting Bell Matrices", p. 171.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,3,-1).
Programs
-
Mathematica
a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {1}, {1}})[[2, 1]]; Table[ a[n], {n, 26}] (* Robert G. Wilson v, Jun 01 2004 *) LinearRecurrence[{2,3,-1},{4,13,37},30] (* Harvey P. Dale, Jan 18 2016 *)
-
PARI
Vec((4+5*x-x^2)/(1-2*x-3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
Formula
Extensions
Edited, corrected and extended by Robert G. Wilson v, Jun 01 2004
Comments