cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A095125 Expansion of -x*(-1-x+x^2) / ( 1-2*x-3*x^2+x^3 ).

Original entry on oeis.org

1, 3, 8, 24, 69, 202, 587, 1711, 4981, 14508, 42248, 123039, 358314, 1043497, 3038897, 8849971, 25773136, 75057288, 218584013, 636566754, 1853828259, 5398772767, 15722463557, 45787417156, 133343452216, 388326692343, 1130896324178, 3293429273169, 9591220826529
Offset: 1

Views

Author

Gary W. Adamson, May 29 2004

Keywords

Comments

A sequence generated from a rotated Stirling number of the second kind matrix.
a(n)/a(n-1) tends to the largest positive eigenvalue of the matrix, 2.9122291784..., a root of the characteristic polynomial x^3 - 2x^2 - 3x + 1; e.g., a(9)/a(8) = 4981/1711 = 2.91116... A095127 is generated from an inverse of M, while A095126 is generated from M.

Examples

			a(5) = 69 = 2*a(4) + 3*a(3) - a(2) = 2*24 + 3*8 - 3.
a(5) = 69 since M^5 * [1 1 1] = [202 316 69] = [a(6) A095126(a) a(5)].
		

References

  • R. Aldrovandi, "Special Matrices of Mathematical Physics," World Scientific, 2001, Section 13.3.1 "Inverting Bell Matrices", p. 171.

Crossrefs

Programs

  • Magma
    I:=[1,3,8]; [n le 3 select I[n]  else 2*Self(n-1)+3*Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
  • Mathematica
    a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {1}, {1}})[[3, 1]]; Table[ a[n], {n, 25}] (* Robert G. Wilson v, Jun 01 2004 *)
    LinearRecurrence[{2,3,-1},{1,3,8},30] (* Harvey P. Dale, Nov 13 2011 *)
  • PARI
    Vec((1+x-x^2)/(1-2*x-3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
    

Formula

a(n+3) = 2*a(n+2) + 3*a(n+1) - a(n), with a(1) = 1, a(2) = 3, a(3) = 8.
M = [1 1 1 / 3 1 0 / 1 0 0], a rotation of a Stirling number of the second kind matrix [1 0 0 / 1 1 0 / 1 3 1]; then M^n * [1 1 1] = [a(n+1), A095126(n) a(n)].

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jun 01 2004
Definition corrected by Harvey P. Dale, Nov 13 2011
a(27)-a(29) from Vincenzo Librandi, Jul 25 2015

A095127 a(n+3) = 2*a(n+2) + 3*a(n+1) - a(n); with a(1) = 1, a(2) = 4, a(3) = 10.

Original entry on oeis.org

1, 4, 10, 31, 88, 259, 751, 2191, 6376, 18574, 54085, 157516, 458713, 1335889, 3890401, 11329756, 32994826, 96088519, 279831760, 814934251, 2373275263, 6911521519, 20127934576, 58617158446, 170706599101, 497136738964
Offset: 1

Views

Author

Gary W. Adamson, May 29 2004

Keywords

Comments

A sequence generated from the characteristic polynomial of A095125 and A095126.
a(n)/a(n-1) tends to a 2.9122291784..., a root of the polynomial x^3 - 2x^2 - 3x + 1; e.g. a(16)/a(15) = 11329756/3890401 = 2.912233...

Examples

			a(7) = 751 = 2*a(6) + 3*a(5) - a(4) = 2*259 + 3*88 - 31.
a(4) = 31 = center term in M^4 * [1 1 1] = [10 31 88].
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 4; a[3] = 10; a[n_] := a[n] = 2a[n - 1] + 3a[n - 2] - a[n - 3]; Table[ a[n], {n, 25}] (* Robert G. Wilson v, Jun 01 2004 *)
    nxt[{a_,b_,c_}]:={b,c,2c+3b-a}; NestList[nxt,{1,4,10},30][[All,1]] (* or *) LinearRecurrence[{2,3,-1},{1,4,10},30] (* Harvey P. Dale, Feb 08 2022 *)
  • PARI
    Vec(x*(1 + 2*x - x^2) / (1 - 2*x - 3*x^2 + x^3) + O(x^30)) \\ Colin Barker, Aug 31 2019

Formula

M = a matrix having the same eigenvalues as the roots of the characteristic polynomial of A095125 and A095126: (x^3 - 2x^2 - 3x + 1). Then M^n * [1 1 1] = [p q r] where q = a(n) and p, r, are offset members of the same sequence.
G.f.: x*(1 + 2*x - x^2) / (1 - 2*x - 3*x^2 + x^3). - Colin Barker, Aug 31 2019

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jun 01 2004

A095128 a(n+3) = 3*a(n+2) + 2*a(n+1) - a(n).

Original entry on oeis.org

1, 4, 13, 46, 160, 559, 1951, 6811, 23776, 82999, 289738, 1011436, 3530785, 12325489, 43026601, 150199996, 524327701, 1830356494, 6389524888, 22304959951, 77863573135, 271811114419, 948855529576, 3312325244431, 11562875678026, 40364421993364, 140906692091713
Offset: 1

Views

Author

Gary W. Adamson, May 29 2004

Keywords

Comments

A sequence generated from an inverse Bell matrix, M.
a(n)/a(n-1) tends to 3.4908636153..., which is a root of x^3 - 3*x^2 - 2*x + 1 and an eigenvalue of M. A095127 is generated from the reflected polynomial: x^3 - 2*x^2 - 3*x + 1 and the inverse matrix of M. Bell numbers are sums of row terms of the 3rd-order Stirling number of the second kind matrix shown on p. 171 of Aldrovandi, the matrix being [1 0 0 / 1 1 0 / 1 3 1]. Rotations, or inverses, or related polynomials generate A095125, A095126, A095127, A095128.

Examples

			a(6) = 559 = 3*a(5) + 2*a(4) - a(3) = 3*160 + 2*46 - 13.
a(4) = 46 since M^4 * [1 1 1] = [160 46 13] = [a(5) a(4) a(3)].
		

References

  • R. Aldrovandi, "Special Matrices of Mathematical Physics", World Scientific, 2001, section 13.3.1, "Inverting Bell Matrices", p. 171.

Crossrefs

Programs

  • Magma
    I:=[1,4,13]; [n le 3 select I[n]  else 3*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
  • Mathematica
    a[n_] := (MatrixPower[{{3, 2, -1}, {1, 0, 0}, {0, 1, 0}}, n].{{1}, {1}, {1}})[[2, 1]]; Table[ a[n], {n, 24}] (* Robert G. Wilson v, Jun 01 2004 *)
    LinearRecurrence[{3,2,-1},{1,4,13},30] (* Harvey P. Dale, Dec 14 2012 *)

Formula

Invert the matrix used to generate A095127, getting M = [3 2 -1 / 1 0 0 / 0 1 0]. Then M^n * [1 1 1] = [p q r] where a(n) = the center term q.
G.f.: (-x^2+x+1)/(x^3-2*x^2-3*x+1). - Harvey P. Dale, Dec 14 2012

Extensions

Edited and extended by Robert G. Wilson v, Jun 01 2004
a(25)-a(27) from Vincenzo Librandi, Jul 25 2015

A095310 a(n+3) = 2*a(n+2) + 3*(n+1) - a(n).

Original entry on oeis.org

1, 5, 12, 38, 107, 316, 915, 2671, 7771, 22640, 65922, 191993, 559112, 1628281, 4741905, 13809541, 40216516, 117119750, 341079507, 993301748, 2892722267, 8424270271, 24533405595, 71446899736, 208069745986, 605946785585
Offset: 1

Views

Author

Gary W. Adamson, Jun 02 2004

Keywords

Comments

Let M = the 3 X 3 matrix [1 1 1 / 3 1 0 / 1 0 0], then M^n * [1 0 0] = [a(n) q a(n-1)] where q is another sequence with the same recursion rule.

Examples

			a(6) = 316 = 2*107 + 3*38 - 12.
a(5) = 107 since M^5 * [1 0 0] = [107 q 38].
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 27}] (* Robert G. Wilson v, Jun 05 2004 *)
    LinearRecurrence[{2,3,-1},{1,5,12},30] (* Harvey P. Dale, Jan 25 2014 *)

Formula

G.f.: (-x^2+3*x+1)/(x^3-3*x^2-2*x+1). - Harvey P. Dale, Jan 25 2014

Extensions

Corrected and extended by Robert G. Wilson v, Jun 05 2004
Edited by N. J. A. Sloane, Jun 07 2004
Showing 1-4 of 4 results.