A095125
Expansion of -x*(-1-x+x^2) / ( 1-2*x-3*x^2+x^3 ).
Original entry on oeis.org
1, 3, 8, 24, 69, 202, 587, 1711, 4981, 14508, 42248, 123039, 358314, 1043497, 3038897, 8849971, 25773136, 75057288, 218584013, 636566754, 1853828259, 5398772767, 15722463557, 45787417156, 133343452216, 388326692343, 1130896324178, 3293429273169, 9591220826529
Offset: 1
a(5) = 69 = 2*a(4) + 3*a(3) - a(2) = 2*24 + 3*8 - 3.
a(5) = 69 since M^5 * [1 1 1] = [202 316 69] = [a(6) A095126(a) a(5)].
- R. Aldrovandi, "Special Matrices of Mathematical Physics," World Scientific, 2001, Section 13.3.1 "Inverting Bell Matrices", p. 171.
-
I:=[1,3,8]; [n le 3 select I[n] else 2*Self(n-1)+3*Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
-
a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {1}, {1}})[[3, 1]]; Table[ a[n], {n, 25}] (* Robert G. Wilson v, Jun 01 2004 *)
LinearRecurrence[{2,3,-1},{1,3,8},30] (* Harvey P. Dale, Nov 13 2011 *)
-
Vec((1+x-x^2)/(1-2*x-3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
A095127
a(n+3) = 2*a(n+2) + 3*a(n+1) - a(n); with a(1) = 1, a(2) = 4, a(3) = 10.
Original entry on oeis.org
1, 4, 10, 31, 88, 259, 751, 2191, 6376, 18574, 54085, 157516, 458713, 1335889, 3890401, 11329756, 32994826, 96088519, 279831760, 814934251, 2373275263, 6911521519, 20127934576, 58617158446, 170706599101, 497136738964
Offset: 1
a(7) = 751 = 2*a(6) + 3*a(5) - a(4) = 2*259 + 3*88 - 31.
a(4) = 31 = center term in M^4 * [1 1 1] = [10 31 88].
-
a[1] = 1; a[2] = 4; a[3] = 10; a[n_] := a[n] = 2a[n - 1] + 3a[n - 2] - a[n - 3]; Table[ a[n], {n, 25}] (* Robert G. Wilson v, Jun 01 2004 *)
nxt[{a_,b_,c_}]:={b,c,2c+3b-a}; NestList[nxt,{1,4,10},30][[All,1]] (* or *) LinearRecurrence[{2,3,-1},{1,4,10},30] (* Harvey P. Dale, Feb 08 2022 *)
-
Vec(x*(1 + 2*x - x^2) / (1 - 2*x - 3*x^2 + x^3) + O(x^30)) \\ Colin Barker, Aug 31 2019
A095128
a(n+3) = 3*a(n+2) + 2*a(n+1) - a(n).
Original entry on oeis.org
1, 4, 13, 46, 160, 559, 1951, 6811, 23776, 82999, 289738, 1011436, 3530785, 12325489, 43026601, 150199996, 524327701, 1830356494, 6389524888, 22304959951, 77863573135, 271811114419, 948855529576, 3312325244431, 11562875678026, 40364421993364, 140906692091713
Offset: 1
a(6) = 559 = 3*a(5) + 2*a(4) - a(3) = 3*160 + 2*46 - 13.
a(4) = 46 since M^4 * [1 1 1] = [160 46 13] = [a(5) a(4) a(3)].
- R. Aldrovandi, "Special Matrices of Mathematical Physics", World Scientific, 2001, section 13.3.1, "Inverting Bell Matrices", p. 171.
-
I:=[1,4,13]; [n le 3 select I[n] else 3*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
-
a[n_] := (MatrixPower[{{3, 2, -1}, {1, 0, 0}, {0, 1, 0}}, n].{{1}, {1}, {1}})[[2, 1]]; Table[ a[n], {n, 24}] (* Robert G. Wilson v, Jun 01 2004 *)
LinearRecurrence[{3,2,-1},{1,4,13},30] (* Harvey P. Dale, Dec 14 2012 *)
A095310
a(n+3) = 2*a(n+2) + 3*(n+1) - a(n).
Original entry on oeis.org
1, 5, 12, 38, 107, 316, 915, 2671, 7771, 22640, 65922, 191993, 559112, 1628281, 4741905, 13809541, 40216516, 117119750, 341079507, 993301748, 2892722267, 8424270271, 24533405595, 71446899736, 208069745986, 605946785585
Offset: 1
a(6) = 316 = 2*107 + 3*38 - 12.
a(5) = 107 since M^5 * [1 0 0] = [107 q 38].
-
a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 27}] (* Robert G. Wilson v, Jun 05 2004 *)
LinearRecurrence[{2,3,-1},{1,5,12},30] (* Harvey P. Dale, Jan 25 2014 *)
Showing 1-4 of 4 results.
Comments