cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095128 a(n+3) = 3*a(n+2) + 2*a(n+1) - a(n).

Original entry on oeis.org

1, 4, 13, 46, 160, 559, 1951, 6811, 23776, 82999, 289738, 1011436, 3530785, 12325489, 43026601, 150199996, 524327701, 1830356494, 6389524888, 22304959951, 77863573135, 271811114419, 948855529576, 3312325244431, 11562875678026, 40364421993364, 140906692091713
Offset: 1

Views

Author

Gary W. Adamson, May 29 2004

Keywords

Comments

A sequence generated from an inverse Bell matrix, M.
a(n)/a(n-1) tends to 3.4908636153..., which is a root of x^3 - 3*x^2 - 2*x + 1 and an eigenvalue of M. A095127 is generated from the reflected polynomial: x^3 - 2*x^2 - 3*x + 1 and the inverse matrix of M. Bell numbers are sums of row terms of the 3rd-order Stirling number of the second kind matrix shown on p. 171 of Aldrovandi, the matrix being [1 0 0 / 1 1 0 / 1 3 1]. Rotations, or inverses, or related polynomials generate A095125, A095126, A095127, A095128.

Examples

			a(6) = 559 = 3*a(5) + 2*a(4) - a(3) = 3*160 + 2*46 - 13.
a(4) = 46 since M^4 * [1 1 1] = [160 46 13] = [a(5) a(4) a(3)].
		

References

  • R. Aldrovandi, "Special Matrices of Mathematical Physics", World Scientific, 2001, section 13.3.1, "Inverting Bell Matrices", p. 171.

Crossrefs

Programs

  • Magma
    I:=[1,4,13]; [n le 3 select I[n]  else 3*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
  • Mathematica
    a[n_] := (MatrixPower[{{3, 2, -1}, {1, 0, 0}, {0, 1, 0}}, n].{{1}, {1}, {1}})[[2, 1]]; Table[ a[n], {n, 24}] (* Robert G. Wilson v, Jun 01 2004 *)
    LinearRecurrence[{3,2,-1},{1,4,13},30] (* Harvey P. Dale, Dec 14 2012 *)

Formula

Invert the matrix used to generate A095127, getting M = [3 2 -1 / 1 0 0 / 0 1 0]. Then M^n * [1 1 1] = [p q r] where a(n) = the center term q.
G.f.: (-x^2+x+1)/(x^3-2*x^2-3*x+1). - Harvey P. Dale, Dec 14 2012

Extensions

Edited and extended by Robert G. Wilson v, Jun 01 2004
a(25)-a(27) from Vincenzo Librandi, Jul 25 2015