cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095151 a(n+3) = 3*a(n+2) - 2*a(n+1) + 1 with a(0)=0, a(1)=2.

Original entry on oeis.org

0, 2, 7, 18, 41, 88, 183, 374, 757, 1524, 3059, 6130, 12273, 24560, 49135, 98286, 196589, 393196, 786411, 1572842, 3145705, 6291432, 12582887, 25165798, 50331621, 100663268, 201326563, 402653154, 805306337, 1610612704, 3221225439
Offset: 0

Views

Author

Gary W. Adamson, May 30 2004

Keywords

Comments

A sequence generated from a Bell difference row matrix, companion to A095150.
A095150 uses the same recursion rule but the multiplier [1 1 1] instead of [1 0 0].
For n>0, (a(n)) is row 2 of the convolution array A213568. - Clark Kimberling, Jun 20 2012
For n>0, (a(n)) is row 2 of the convolution array A213568. - Clark Kimberling, Jun 20 2012

Examples

			a(6) = 183 = 3*88 -2*41 + 1.
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> 3*2^n -(n+3)); # G. C. Greubel, Jul 26 2019
  • Magma
    [3*2^n -(n+3): n in [0..30]]; // G. C. Greubel, Jul 26 2019
    
  • Mathematica
    Table[3*2^n -(n+3), {n,0,30}] (* G. C. Greubel, Jul 26 2019 *)
  • PARI
    vector(30, n, n--; 3*2^n -(n+3)) \\ G. C. Greubel, Jul 26 2019
    
  • Sage
    [3*2^n -(n+3) for n in (0..30)] # G. C. Greubel, Jul 26 2019
    

Formula

Let M = a 3 X 3 matrix having Bell triangle difference terms (A095149 is composed of differences of the Bell triangle A011971): (fill in the 3 X 3 matrix with zeros): [1 0 0 / 1 1 0 / 2 1 2] = M. Then M^n * [1 0 0] = [1 n a(n)]. E.g. a(4) = 41 since M^4 * [1 0 0] = [1 4 41].
a(n) = 3*2^n -(n+3) = 2*a(n-1) + n +1 = A000295(n+2) - A000079(n). For n>0, a(n) = A077802(n). - Henry Bottomley, Oct 25 2004
From Colin Barker, Apr 23 2012: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: x*(2-x)/((1-x)^2*(1-2*x)). (End)
a(n) = A125128(n) + A000225(n). - Miquel Cerda, Aug 07 2016
a(n) = 2*A125128(n) - A000325(n) + 1. - Miquel Cerda, Aug 12 2016
a(n) = A125128(n) + A000325(n) + n - 1. - Miquel Cerda, Aug 27 2016
E.g.f.: 3*exp(2*x) - (3+x)*exp(x). - G. C. Greubel, Jul 26 2019
Let Prod_{i=0..n-1} (1+x^{2^i}+x^{2*2^i}) = Sum_{j=0..d} b_j x^j, where d=2^{n+1}-2. Then a(n) = Sum_{j=0..d-1} b_j/b_{j+1} (proved). - Richard Stanley, Aug 27 2019

Extensions

Edited by Robert G. Wilson v, Jun 05 2004
Deleted a comment and file that were unrelated to this sequence. - N. J. A. Sloane, Aug 17 2025