cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095311 47-gonal numbers.

Original entry on oeis.org

1, 47, 138, 274, 455, 681, 952, 1268, 1629, 2035, 2486, 2982, 3523, 4109, 4740, 5416, 6137, 6903, 7714, 8570, 9471, 10417, 11408, 12444, 13525, 14651, 15822, 17038, 18299, 19605, 20956, 22352, 23793, 25279, 26810, 28386, 30007, 31673, 33384
Offset: 1

Views

Author

Gary W. Adamson, Jun 02 2004

Keywords

Examples

			a(6) = 681 = 3*a(5) - 3*a(4) + a(3) = 3*455 - 3*274 + 138.
a(37) = 30007 since M^37 * [1 0 0] = [1 37 30007].
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966, pp. 185-194.

Crossrefs

Cf. A081422, A000326, A000384, A000566, A000567, ... (all polygonal sequences).

Programs

  • Magma
    I:=[1,47,138]; [n le 3 select I[n]  else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
    
  • Mathematica
    a[n_] := (MatrixPower[{{1, 0, 0}, {1, 1, 0}, {1, 45, 1}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 40}] (* Robert G. Wilson v, Jun 05 2004 *)
    LinearRecurrence[{3, -3, 1}, {1, 47, 138}, 40] (* Vincenzo Librandi, Jul 25 2015 *)
    PolygonalNumber[47,Range[40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 01 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-3,3]^(n-1)*[1;47;138])[1,1] \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n+3) = 3*a(n+2) - 3*a(n+1) - a(n); a(1) = 1, a(2) = 47, a(3) = 138.
Let M = the 3 X 3 matrix [1 0 0 / 1 1 0 / 1 45 1]. Then M^n * [1 0 0] = [1 n a(n)].
From Colin Barker, Jul 27 2013: (Start)
a(n) = (n*(45*n-43))/2.
G.f.: -x*(44*x+1) / (x-1)^3. (End)
E.g.f.: exp(x)*(x + 45*x^2/2). - Nikolaos Pantelidis, Feb 10 2023

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 05 2004