cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095343 Length of n-th string generated by a Kolakoski(7,1) rule starting with a(1)=1.

Original entry on oeis.org

1, 1, 7, 7, 31, 49, 145, 289, 727, 1591, 3775, 8545, 19873, 45505, 105127, 241639, 557023, 1281937, 2953009, 6798817, 15657847, 36054295, 83027839, 191190721, 440274241, 1013846401, 2334669127, 5376208327, 12380215711, 28508840689
Offset: 1

Views

Author

Benoit Cloitre, Jun 03 2004

Keywords

Comments

Each string is derived from the previous string using the Kolakoski(7,1) rule and the additional condition: "string begins with 1 if previous string ends with 5 and vice versa". The strings are 1 -> 7 -> 1111111 -> 7171717 -> 11111117111111171111111711111117 -> ... and each one contains 1,1,7,7,31,... elements.

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..35] do a[n]:=a[n-1]-3*a[n-2]-3*(-1)^n; od; a; # G. C. Greubel, Dec 26 2019
  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-1) + 3*Self(n-2) - 3*(-1)^n: n in [1..35]]; // G. C. Greubel, Dec 26 2019
    
  • Maple
    seq(coeff(series(x*(1+x+3*x^2)/((1+x)*(1-x-3*x^2)), x, n+1), x, n), n = 0..35); # G. C. Greubel, Dec 26 2019
  • Mathematica
    Table[ 3*(-1)^n + 2*Sqrt[3]^n*(Sqrt[3]*Fibonacci[n, 1/Sqrt[3]] - Fibonacci[n+1, 1/Sqrt[3]]), {n,35}]//FullSimplify (* G. C. Greubel, Dec 26 2019 *)
  • PARI
    vector(35, n, round(3*(-1)^n + 2*(sqrt(3)/I)^n*(sqrt(3)*I* polchebyshev(n-1, 2, I/(2*sqrt(3))) - polchebyshev(n, 2, I/(2*sqrt(3)))) )) \\ G. C. Greubel, Dec 26 2019
    
  • Sage
    def A095343_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x+3*x^2)/((1+x)*(1-x-3*x^2)) ).list()
    a=A095343_list(35); a[1:] # G. C. Greubel, Dec 26 2019
    

Formula

a(1) = a(2) = 1, a(n) = a(n-1) + 3*a(n-2) - 3*(-1)^n.
G.f.: x*(1+x+3*x^2)/((1+x)*(1-x-3*x^2)). - Colin Barker, Jul 02 2012
a(n) = 3*(-1)^n + 2*(sqrt(3)/i)^n*(sqrt(3)*i*ChebyshevU(n, i/(2*sqrt(3))) - ChebyshevU(n-1, i/(2*sqrt(3)))). - G. C. Greubel, Dec 26 2019