A095366 Least k > 1 such that k divides 1^n + 2^n +...+ (k-1)^n.
3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 17, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7
Offset: 1
Keywords
Examples
a(4) = 7 because k divides 1^4 + 2^4 +...+ k^4 for k=7 but no smaller k > 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
Mathematica
Table[k=2; s=0; While[s=s+(k-1)^n; Mod[s, k]>0, k++ ]; k, {n, 100}]
-
PARI
A095366(n) = { my(k=1,s=0); while(1, k++; s += ((k-1)^n); if(!(s%k), return(k))); }; \\ Antti Karttunen, Dec 19 2018
Comments