cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095405 Numbers n such that Sum-of-digits-of-n = Sum-of-digits-of-all-distinct-prime-factors-of-n.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 22, 23, 29, 31, 37, 41, 43, 47, 53, 58, 59, 61, 67, 71, 73, 79, 83, 84, 85, 89, 94, 97, 101, 103, 107, 109, 113, 127, 131, 136, 137, 139, 149, 151, 157, 160, 163, 166, 167, 173, 179, 181, 191, 193, 197, 199, 202, 211, 223, 227, 229, 233, 234
Offset: 1

Views

Author

Labos Elemer, Jun 21 2004

Keywords

Examples

			n=85: digit sum=13, prime factor-digit sum=5+1+7=13, so 85 is here.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] :=Flatten[FactorInteger[x]] lf[x_] :=Length[FactorInteger[x]] ba[x_] :=Table[Part[ffi[x], 2*j-1], {j, 1, lf[x]}] sd[x_] :=Apply[Plus, IntegerDigits[x]] tdp[x_] :=Flatten[Table[IntegerDigits[Part[ba[x], j]], {j, 1, lf[x]}], 1] sdp[x_] :=Apply[Plus, tdp[x]] a=Table[sd[w], {w, 1, 256}];b=Table[sdp[w], {w, 1, 150}];b-a; Flatten[Position[Sign[b-a], 0]]
    Select[Range[2,300],Total[Flatten[IntegerDigits/@FactorInteger[#][[All, 1]]]] == Total[IntegerDigits[#]]&] (* Harvey P. Dale, Sep 29 2019 *)

Formula

Solutions to A007953[x]=A095402[x].

A095406 Numbers n such that Sum-of-digits-of-n < Sum-of-digits-of-all-distinct-prime-factors-of-n.

Original entry on oeis.org

10, 12, 14, 15, 20, 21, 30, 34, 35, 38, 40, 42, 50, 51, 57, 60, 63, 70, 74, 90, 91, 95, 100, 102, 104, 105, 106, 110, 111, 112, 114, 115, 116, 118, 119, 120, 122, 123, 126, 130, 132, 133, 134, 140, 141, 142, 145, 146, 150, 152, 153, 154, 158, 161, 170, 171, 174
Offset: 1

Views

Author

Labos Elemer, Jun 21 2004

Keywords

Examples

			n=38: digit sum=11, prime factor-digit sum=2+1+9=12>11, so 38 is here;
n=10^j:digit sum=1, prime factor-digit sum=2+5=7?1. so 10^j is here for all j [this implies that the sequence is infinite].
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] :=Flatten[FactorInteger[x]] lf[x_] :=Length[FactorInteger[x]] ba[x_] :=Table[Part[ffi[x], 2*j-1], {j, 1, lf[x]}] sd[x_] :=Apply[Plus, IntegerDigits[x]] tdp[x_] :=Flatten[Table[IntegerDigits[Part[ba[x], j]], {j, 1, lf[x]}], 1] sdp[x_] :=Apply[Plus, tdp[x]] a=Table[sd[w], {w, 1, 256}];b=Table[sdp[w], {w, 1, 150}];b-a; Flatten[Position[Sign[b-a], -1]]
    Select[Range[200],Total[IntegerDigits[#]]Harvey P. Dale, May 06 2012 *)

Formula

Solutions to A007953[x] < A095402[x].
Showing 1-2 of 2 results.