cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095405 Numbers n such that Sum-of-digits-of-n = Sum-of-digits-of-all-distinct-prime-factors-of-n.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 22, 23, 29, 31, 37, 41, 43, 47, 53, 58, 59, 61, 67, 71, 73, 79, 83, 84, 85, 89, 94, 97, 101, 103, 107, 109, 113, 127, 131, 136, 137, 139, 149, 151, 157, 160, 163, 166, 167, 173, 179, 181, 191, 193, 197, 199, 202, 211, 223, 227, 229, 233, 234
Offset: 1

Views

Author

Labos Elemer, Jun 21 2004

Keywords

Examples

			n=85: digit sum=13, prime factor-digit sum=5+1+7=13, so 85 is here.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] :=Flatten[FactorInteger[x]] lf[x_] :=Length[FactorInteger[x]] ba[x_] :=Table[Part[ffi[x], 2*j-1], {j, 1, lf[x]}] sd[x_] :=Apply[Plus, IntegerDigits[x]] tdp[x_] :=Flatten[Table[IntegerDigits[Part[ba[x], j]], {j, 1, lf[x]}], 1] sdp[x_] :=Apply[Plus, tdp[x]] a=Table[sd[w], {w, 1, 256}];b=Table[sdp[w], {w, 1, 150}];b-a; Flatten[Position[Sign[b-a], 0]]
    Select[Range[2,300],Total[Flatten[IntegerDigits/@FactorInteger[#][[All, 1]]]] == Total[IntegerDigits[#]]&] (* Harvey P. Dale, Sep 29 2019 *)

Formula

Solutions to A007953[x]=A095402[x].

A095404 Numbers n such that Sum-of-digits-of-n > Sum-of-digits-of-all-distinct-prime-factors-of-n.

Original entry on oeis.org

1, 4, 6, 8, 9, 16, 18, 24, 25, 26, 27, 28, 32, 33, 36, 39, 44, 45, 46, 48, 49, 52, 54, 55, 56, 62, 64, 65, 66, 68, 69, 72, 75, 76, 77, 78, 80, 81, 82, 86, 87, 88, 92, 93, 96, 98, 99, 108, 117, 121, 124, 125, 128, 129, 135, 138, 143, 144, 147, 148, 155, 156, 159, 162, 164
Offset: 1

Views

Author

Labos Elemer, Jun 21 2004

Keywords

Examples

			n=24: digit sum=6, prime factor-digit sum=2+3=5, so 24 is here;
n=153: digit sum=9, prime factor-digit sum=3+5+3=11>9, so 153 is here.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] :=Flatten[FactorInteger[x]] lf[x_] :=Length[FactorInteger[x]] ba[x_] :=Table[Part[ffi[x], 2*j-1], {j, 1, lf[x]}] sd[x_] :=Apply[Plus, IntegerDigits[x]] tdp[x_] :=Flatten[Table[IntegerDigits[Part[ba[x], j]], {j, 1, lf[x]}], 1] sdp[x_] :=Apply[Plus, tdp[x]] a=Table[sd[w], {w, 1, 256}];b=Table[sdp[w], {w, 1, 150}];b-a; Flatten[Position[Sign[b-a], 1]]

Formula

Solutions to A007953[x]>A095402[x].
Showing 1-2 of 2 results.