cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A095409 Numbers k such that total number of decimal digits of all distinct prime factors of k is smaller than number of digits of k.

Original entry on oeis.org

1, 16, 25, 27, 32, 49, 64, 81, 100, 108, 112, 121, 125, 128, 135, 144, 147, 160, 162, 169, 175, 189, 192, 196, 200, 216, 224, 225, 243, 245, 250, 256, 288, 289, 320, 324, 343, 361, 375, 384, 392, 400, 405, 432, 441, 448, 486, 500, 512, 529, 567, 576, 625, 640
Offset: 1

Views

Author

Labos Elemer, Jun 21 2004

Keywords

Examples

			k = 100: prime set = {2,5}, 3 digits and 2 digits of prime factors, so 100 is a term.
k = 147: prime set = {3,7}, 3 digits and 2 digits of prime factors, so 147 is a term.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Total[IntegerLength /@ FactorInteger[n][[;; , 1]]] < IntegerLength[n]; q[1] = True; Select[Range[640], q] (* Amiram Eldar, Mar 25 2025 *)

Formula

Solutions to A095407(x) < A055642(x).

A095410 Numbers n such that total number of decimal digits of all distinct prime factors of n equals the number of digits of n.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 28, 29, 31, 35, 36, 37, 40, 41, 43, 45, 47, 48, 50, 53, 54, 56, 59, 61, 63, 67, 71, 72, 73, 75, 79, 80, 83, 89, 96, 97, 98, 101, 103, 104, 105, 106, 107, 109, 111, 113, 115, 116, 117, 118, 119, 120, 122
Offset: 1

Views

Author

Labos Elemer, Jun 21 2004

Keywords

Examples

			n=184, 3 digits,prime set={2,23} also with 3 digits {2,2,3}.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] :=Flatten[FactorInteger[x]] lf[x_] :=Length[FactorInteger[x]] ba[x_] :=Table[Part[ffi[x], 2*j-1], {j, 1, lf[x]}] tdp[x_] :=Flatten[Table[IntegerDigits[Part[ba[x], j]], {j, 1, lf[x]}], 1] pl[x_] :=Length[tdp[x]] nl[x_] :=Length[IntegerDigits[x]] t1=Table[nl[w], {w, 1, 1000}];t2=Table[pl[w], {w, 1, 1000}];t2-t1 Flatten[Position[t2-t1, 0]]
    Rest[Select[Range[200],Length[Flatten[IntegerDigits/@Transpose[ FactorInteger[ #]][[1]]]]==IntegerLength[#]&]] (* Harvey P. Dale, Oct 22 2011 *)

Formula

Solutions to A095407[x]=A055642[x].

A382364 a(n) is the smallest squarefree number k such that the sum of the digit counts of the prime factors of k equals the sum of n and the digit count of k.

Original entry on oeis.org

6, 66, 858, 72930, 6374082, 643782282, 66309575046
Offset: 1

Views

Author

Jean-Marc Rebert, Mar 24 2025

Keywords

Examples

			a(1) = 6 = 2*3, because the total number of digits in its distinct prime factors (2 and 3) is 2. This equals the sum of n = 1 and the number of digits in 6, which is 1, and no lesser number has this property.
a(2) = 66 = 2*3*11, because the total number of digits in its distinct prime factors (2, 3 and 11) is 4. This equals the sum of n = 2 and the number of digits in 66, which is 2, and no lesser number has this property.
Table begins:
  1 6 = 2 * 3;
  2 66 = 2 * 3 * 11;
  3 858 = 2 * 3 * 11 * 13;
  4 72930 = 2 * 3 * 5 * 11 * 13 * 17;
  5 6374082 = 2 * 3 * 11 * 13 * 17 * 19 * 23;
  6 643782282 = 2 * 3 * 11 * 13 * 17 * 19 * 23 * 101;
  7 66309575046 = 2 * 3 * 11 * 13 * 17 * 19 * 23 * 101 * 103;
		

Crossrefs

Programs

  • PARI
    isok(k, n) = if (issquarefree(k), my(f=factor(k)[,1]); sum(i=1, #f, #digits(f[i])) == n+#digits(k));
    a(n) = my(k=2); while (!isok(k, n), k++); k; \\ Michel Marcus, Apr 02 2025
Showing 1-3 of 3 results.