cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095421 Triangle read by rows: T(n,m) = number of m-block proper covers (without empty blocks and without multiple blocks) of a labeled n-set (n>=2, 2<=m<=2^n-2).

Original entry on oeis.org

1, 6, 17, 15, 6, 1, 25, 230, 861, 1918, 2975, 3428, 3003, 2002, 1001, 364, 91, 14, 1, 90, 2125, 20930, 127701, 568820, 2003635, 5820750, 14282125, 30030000, 54620475, 86490950, 119759325, 145422600, 155117515, 145422675, 119759850, 86493225
Offset: 2

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 04 2004

Keywords

Examples

			1;
6,17,15,6,1;
25,230,861,1918,2975,3428,3003,2002,1001,364,91,14,1;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, m_] := Sum[(-1)^(n - i)*Binomial[n, i]*Binomial[2^i - 1, m], {i, 1, n}] - Binomial[2^n - 2, m - 1]; Table[T[n, m], {n, 2, 10}, {m, 2, 2^n - 2}] // Flatten (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=2,6, for(m=2, 2^n -2, print1(sum(j=1,n, (-1)^(n-j)* binomial(n, j)*binomial(2^j -1, m)), ", "))) \\ G. C. Greubel, Oct 07 2017

Formula

T(n, m) = Sum((-1)^(n-i)*binomial(n, i)*binomial(2^i-1, m), i=1..n) - binomial(2^n-2, m-1).

A095423 Number of proper T_0-covers of an n-set.

Original entry on oeis.org

0, 1, 42, 15654, 1073421588, 4611685989440629944, 85070591730234615704434641716516893512, 28948022309329048855892746252171976959574390130279817915318273546782086570304
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 04 2004

Keywords

Comments

The next term has 154 decimal digits.

Crossrefs

Row sums of A095422, A095421.

Programs

  • PARI
    a(n)=sum(k=0,n, (2*stirling(n+1, k+1, 1) - stirling(n, k,1 )) * 2^(2^k-2) );
    vector(10,n,a(n)) /* show terms */

Formula

a(n) = Sum(Stirling1(n, k)*A007537(k), k=1..n).
a(n) = Sum((2*Stirling1(n+1, k+1)-Stirling1(n, k))*2^(2^k-2), k=0..n).
Showing 1-2 of 2 results.