A095661 Fifth column (m=4) of (1,3)-Pascal triangle A095660.
3, 13, 35, 75, 140, 238, 378, 570, 825, 1155, 1573, 2093, 2730, 3500, 4420, 5508, 6783, 8265, 9975, 11935, 14168, 16698, 19550, 22750, 26325, 30303, 34713, 39585, 44950, 50840, 57288, 64328, 71995, 80325, 89355, 99123, 109668, 121030, 133250, 146370
Offset: 0
Programs
-
Maple
A095661:=n->(n+12)*binomial(n+3, 3)/4; seq(A095661(k), k=0..50); # Wesley Ivan Hurt, Oct 10 2013
-
Mathematica
s1=s2=s3=s4=0;lst={};Do[a=n+(n+2);s1+=a;s2+=s1;s3+=s2;s4+=s3;AppendTo[lst,s3/2],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 04 2009 *) Table[(n+12)Binomial[n+3, 3]/4, {n, 0, 50}] (* Wesley Ivan Hurt, Oct 10 2013 *)
Formula
G.f.: (3-2*x)/(1-x)^5.
a(n) = (n+12)*binomial(n+3, 3)/4 = 3*b(n)-2*b(n-1), with b(n) := binomial(n+4, 4); cf. A000332.
a(n) = Sum_{k=1..n} Sum_{i=1..k} i*(n-k+3), with offset 1. - Wesley Ivan Hurt, Sep 25 2013
Comments