A095666 Pascal (1,4) triangle.
4, 1, 4, 1, 5, 4, 1, 6, 9, 4, 1, 7, 15, 13, 4, 1, 8, 22, 28, 17, 4, 1, 9, 30, 50, 45, 21, 4, 1, 10, 39, 80, 95, 66, 25, 4, 1, 11, 49, 119, 175, 161, 91, 29, 4, 1, 12, 60, 168, 294, 336, 252, 120, 33, 4, 1, 13, 72, 228, 462, 630, 588, 372, 153, 37, 4, 1, 14, 85, 300, 690, 1092
Offset: 0
Examples
Triangle begins: [4]; [1,4]; [1,5,4]; [1,6,9,4]; [1,7,15,13,4]; ...
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- Wolfdieter Lang, First 10 rows.
Crossrefs
Programs
-
Haskell
a095666 n k = a095666_tabl !! n !! k a095666_row n = a095666_tabl !! n a095666_tabl = [4] : iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,4] -- Reinhard Zumkeller, Apr 08 2012
-
Maple
a(n,k):=(1+3*k/n)*binomial(n,k) # Mircea Merca, Apr 08 2012
-
Mathematica
A095666[n_, k_] := If[n == k, 4, (3*k/n + 1)*Binomial[n, k]]; Table[A095666[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)
Formula
Recursion: a(n, m) = 0 if m > n, a(0, 0) = 4; a(n, 0) = 1 if n>=1; a(n, m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (4-3*x)/(1-x)^(m+1), m >= 0.
a(n,k) = (1 + 3*k/n)*binomial(n,k). - Mircea Merca, Apr 08 2012
Comments