cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095691 Multiplicative with a(p^e) = A000720(e)+1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 2, 4, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Vladeta Jovovic, Jul 06 2004

Keywords

Comments

The number of divisors of n that are terms of A056166. - Amiram Eldar, Oct 31 2023

Crossrefs

Programs

  • Mathematica
    Array[Times @@ Map[PrimePi@# + 1 &, FactorInteger[#][[All, -1]] ] &, 120] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A095691(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= (1+primepi(f[k, 2])); ); m; } \\ Antti Karttunen, Jul 19 2017
    
  • Python
    from sympy import factorint, primepi, prod
    def a(n): return 1 if n==1 else prod(primepi(e) + 1 for e in factorint(n).values())
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{q prime} 1/p^q) = Sum_{n>=1} 1/A056166(n) = 1.80728269690724154161... . - Amiram Eldar, Oct 31 2023