cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216201 Square array T, read by antidiagonals : T(n,k) = 0 if n-k>=3 or if k-n>=4, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 0, 4, 6, 3, 0, 0, 4, 10, 9, 0, 0, 0, 0, 14, 19, 9, 0, 0, 0, 0, 14, 33, 28, 0, 0, 0, 0, 0, 0, 47, 61, 28, 0, 0, 0, 0, 0, 0, 47, 108, 89, 0, 0, 0, 0, 0, 0, 0, 0, 155, 197, 89, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 12 2013

Keywords

Examples

			Square array begins:
1, 1, 1,  1,  0,   0,   0,   0,   0,   0, 0, 0, 0, ... row n = 0
1, 2, 3,  4,  4,   0,   0,   0,   0,   0, 0, 0, 0, ... row n = 1
1, 3, 6, 10, 14,  14,   0,   0,   0,   0, 0, 0, 0, ... row n = 2
0, 3, 9, 19, 33,  47,  47,   0,   0,   0, 0, 0, 0, ... row n = 3
0, 0, 9, 28, 61, 108, 155, 155,   0,   0, 0, 0, 0, ... row n = 4
0, 0, 0, 28, 89, 197, 352, 507, 507,   0, 0, 0, 0, ... row n = 5
0, 0, 0,  0, 89, 286, 638,1147,1652,1652, 0, 0, 0, ... row n = 6
...
		

References

  • E. Lucas, Théorie des nombres, Tome 1, Albert Blanchard, Paris, 1958, p.89

Crossrefs

Formula

T(n,n) = A052975(n).
T(n,n+1) = A060557(n).
T(n+1,n) = T(n+2,n) = A094790(n+1).
T(n,n+2) = T(n,n+3) = A094789(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = (-1)^n*A078038(n).

A095788 Table, read by antidiagonals, of iterated binomial transforms of A095148, which also forms the antidiagonal sums shift right.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 10, 15, 14, 1, 5, 17, 37, 51, 44, 1, 6, 26, 77, 150, 190, 155, 1, 7, 37, 141, 371, 656, 766, 605, 1, 8, 50, 235, 798, 1892, 3059, 3329, 2584, 1, 9, 65, 365, 1539, 4708, 10154, 15111, 15553, 11956, 1, 10, 82, 537, 2726, 10394, 28891
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2004

Keywords

Examples

			From this table of iterated binomial transforms of A095148, the antidiagonal sums form the first row (A095148) shift left:
  1,  1,   2,    5,    14,     44,     155,      605,     2584, 11956, 59461, ...
  1,  2,   5,   15,    51,    190,     766,     3329,    15553, 77822, ...
  1,  3,  10,   37,   150,    656,    3059,    15111,    78840, ...
  1,  4,  17,   77,   371,   1892,   10154,    57077,   334993, ...
  1,  5,  26,  141,   798,   4708,   28891,   183953,  1212664, ...
  1,  6,  37,  235,  1539,  10394,   72350,   518505,  3821409, ...
  1,  7,  50,  365,  2726,  20840,  163091,  1306139, 10699288, ...
  1,  8,  65,  537,  4515,  38656,  337114,  2994701, 27094705, ...
  1,  9,  82,  757,  7086,  67292,  648539,  6344517, 63004248, ...
  1, 10, 101, 1031, 10643, 111158, 1175006, 12573713, ...
  ...
		

Crossrefs

Cf. A095148 (first row), A095789 (diagonal).
Showing 1-2 of 2 results.