cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095799 Bell triangle A011971 squared.

Original entry on oeis.org

1, 3, 4, 15, 21, 25, 107, 149, 200, 225, 1054, 1420, 1909, 2479, 2704, 13684, 17814, 23313, 30439, 38505, 41209, 224071, 283592, 360853, 461015, 587641, 727920, 769129, 4471699, 5535812, 6881856, 8590990, 10758160, 13443289, 16370471, 17139600
Offset: 1

Views

Author

Gary W. Adamson, Jun 06 2004

Keywords

Examples

			T(3,2) = 21, because M = [1; 1 2; 2 3 5; ...], M^2 = [1; 3 4; 15 21 25; ...] and M^2[3,2] = 21.
Triangle begins:
:     1;
:     3,     4;
:    15,    21,    25;
:   107,   149,   200,   225;
:  1054,  1420,  1909,  2479,  2704;
: 13684, 17814, 23313, 30439, 38505, 41209;
		

Crossrefs

Cf. A011971. Diagonal gives A001247 for n>0.

Programs

  • Maple
    with(combinat): A:= proc(n, k) option remember; `if`(k<=n, add(binomial(k, i) *bell(n-k+i), i=0..k), 0) end: M:= proc(n) option remember; Matrix(n, (i, j)-> A(i-1, j-1)) end: T:= (n, k)-> (M(n)^2)[n, k]: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Oct 12 2009
  • Mathematica
    max = 10; M = Table[If[k > n, 0, Sum[Binomial[k, i] BellB[n-k+i], {i, 0, k} ]], {n, 0, max-1}, {k, 0, max-1}];
    T = M.M;
    Table[T[[n]][[1 ;; n]], {n, 1, max}] // Flatten (* Jean-François Alcover, May 24 2016 *)

Formula

Let M = the Bell triangle (A011971) as an infinite lower triangle matrix. Then T(n,k) = M^2[n,k].

Extensions

Edited, corrected and extended by Alois P. Heinz, Oct 12 2009