A095799 Bell triangle A011971 squared.
1, 3, 4, 15, 21, 25, 107, 149, 200, 225, 1054, 1420, 1909, 2479, 2704, 13684, 17814, 23313, 30439, 38505, 41209, 224071, 283592, 360853, 461015, 587641, 727920, 769129, 4471699, 5535812, 6881856, 8590990, 10758160, 13443289, 16370471, 17139600
Offset: 1
Examples
T(3,2) = 21, because M = [1; 1 2; 2 3 5; ...], M^2 = [1; 3 4; 15 21 25; ...] and M^2[3,2] = 21. Triangle begins: : 1; : 3, 4; : 15, 21, 25; : 107, 149, 200, 225; : 1054, 1420, 1909, 2479, 2704; : 13684, 17814, 23313, 30439, 38505, 41209;
Links
- Alois P. Heinz, Rows n = 1..45, flattened
Programs
-
Maple
with(combinat): A:= proc(n, k) option remember; `if`(k<=n, add(binomial(k, i) *bell(n-k+i), i=0..k), 0) end: M:= proc(n) option remember; Matrix(n, (i, j)-> A(i-1, j-1)) end: T:= (n, k)-> (M(n)^2)[n, k]: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Oct 12 2009
-
Mathematica
max = 10; M = Table[If[k > n, 0, Sum[Binomial[k, i] BellB[n-k+i], {i, 0, k} ]], {n, 0, max-1}, {k, 0, max-1}]; T = M.M; Table[T[[n]][[1 ;; n]], {n, 1, max}] // Flatten (* Jean-François Alcover, May 24 2016 *)
Formula
Let M = the Bell triangle (A011971) as an infinite lower triangle matrix. Then T(n,k) = M^2[n,k].
Extensions
Edited, corrected and extended by Alois P. Heinz, Oct 12 2009