cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095841 Prime powers having exactly one partition into two prime powers.

Original entry on oeis.org

2, 3, 127, 163, 179, 191, 193, 223, 239, 251, 269, 311, 337, 343, 389, 419, 431, 457, 491, 547, 557, 569, 599, 613, 653, 659, 673, 683, 719, 739, 787, 821, 839, 853, 883, 911, 929, 953, 967, 977, 1117, 1123, 1201, 1229, 1249, 1283, 1289, 1297, 1303, 1327, 1381, 1409, 1423, 1439, 1451, 1471, 1481, 1499, 1607, 1663, 1681
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2004

Keywords

Comments

A095840(A095874(a(n))) = 1.
A071330(a(n)) = 1.

Crossrefs

Intersection of A208247 and A000961.

Programs

  • Haskell
    a095841 n = a095841_list !! (n-1)
    a095841_list = filter ((== 1) . a071330) a000961_list
    -- Reinhard Zumkeller, Jan 11 2013
    
  • Maple
    N:= 10^4: # to get all terms <= N
    primepows:= {1,seq(seq(p^n, n=1..floor(log[p](N))),
        p=select(isprime,[2,seq(2*k+1,k=1..(N-1)/2)]))}:
    npp:= nops(primepows):
    B:= Vector(N,datatype=integer[4]):
    for n from 1 to npp do for m from n to npp do
       j:= primepows[n]+primepows[m];
       if j <= N then B[j]:= B[j]+1 fi;
    od od:
    select(t -> B[t] = 1, primepows); # Robert Israel, Nov 21 2014
  • Mathematica
    max = 2000; ppQ[n_] := n == 1 || PrimePowerQ[n]; pp = Select[Range[max], ppQ]; lp = Length[pp]; Table[pp[[i]] + pp[[j]], {i, 1, lp}, {j, i, lp}] // Flatten // Select[#, ppQ[#] && # <= max&]& // Sort // Split // Select[#, Length[#] == 1&]& // Flatten (* Jean-François Alcover, Mar 04 2019 *)
  • PARI
    is(n)=if(n<127,return(n==2||n==3)); isprimepower(n) && sum(i=2,n\2,isprimepower(i)&&isprimepower(n-i))==1 \\ naive; Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    is(n)=if(!isprimepower(n), return(0)); my(s); forprime(p=2, n\2, if(isprimepower(n-p) && s++>1, return(0))); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e) && s++>1, return(0)))); s+(!!isprimepower(n-1))==1 || n==2 \\ faster; Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    has(n)=my(s); forprime(p=2, n\2, if(isprimepower(n-p) && s++>1, return(0))); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e) && s++>1, return(0)))); s+(!!isprimepower(n-1))==1
    list(lim)=my(v=List([2])); forprime(p=2,lim,if(has(p), listput(v,p))); for(e=2,log(lim)\log(2), forprime(p=2,lim^(1/e), if(has(p^e), listput(v,p^e)))); Set(v) \\ Charles R Greathouse IV, Nov 21 2014