cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095844 Numerator of the integral of the n-th power of the Cantor function.

Original entry on oeis.org

1, 1, 3, 1, 33, 5, 75, 611, 97653, 83057, 22018179, 9625216, 20894487717, 93120706729, 411117020063871, 297434062421057, 6650181371241300777, 6082551300359191981, 2198073713661546055399083, 53388901948383223161199, 31122898898234908646386438959
Offset: 0

Views

Author

Eric W. Weisstein, Jun 08 2004

Keywords

Examples

			1, 1/2, 3/10, 1/5, 33/230, 5/46, 75/874, 611/8740, 97653/1673710, ...
		

Crossrefs

Cf. A095845 (denominators).

Programs

  • Maple
    seq(numer(1/(n+1)-sum(binomial(n,2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/(3*2^(2*k-1)-1)/(n-2*k+1),k = 1 .. floor(1/2*n))),n=1..18); # Emeric Deutsch, Feb 22 2005
  • Mathematica
    a[n_] := Numerator[ 1/(n+1) - Sum[Binomial[n, 2 k]*Floor[2^(2k - 1) - 1]*BernoulliB[2k]/Floor[(3*2^(2k - 1) - 1)*(n - 2k + 1)], {k, 1, Floor[n/2]}]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 23 2012, after Emeric Deutsch *)
    f[0] = 1; f[1] = 1/2; f[n_] := f[n] = (1/(3*2^n - 2))*(2 + Sum[Binomial[n, k]*f[k], {k, 1, n - 1}]); Numerator[Array[f, 20, 0]] (* Amiram Eldar, Jan 26 2024 *)

Formula

The integral, a rational number, is given by J(n) = 1/(n+1) - Sum_{k = 1..floor(n/2)} binomial(n,2*k)*(2^(2*k-1)-1)*Bernoulli(2*k)/((3*2^(2*k-1)-1)*(n-2*k+1)). - Emeric Deutsch, Feb 22 2005
Note that the Cantor function C(x) satisfies C(x) = C(3*x)/2 for x in [0,1/3], 1/2 for x in [1/3,2/3] and (1+C(3*x-2))/2 for x in [2/3,1]. Integrating both sides yields J(n) = (1 + Sum_{k=0..n-1} binomial(n,k)*J(k))/(3*2^n - 2) with J(0) = 1, where J(n) := Integral_{x=0..1} (C(x))^n dx. - Jianing Song, Nov 19 2023
J(n) = (2 + Sum_{k=1..n-1} binomial(n,k) * J(k))/(3*2^n-2) (Diamond and Reznick, 1997). - Amiram Eldar, Jan 26 2024