cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A047815 Erroneous version of A095844.

Original entry on oeis.org

1, 1, 3, 1, 33, 5, 3
Offset: 0

Views

Author

Keywords

A095845 Denominator of the integral of the n-th power of the Cantor function.

Original entry on oeis.org

1, 2, 10, 5, 230, 46, 874, 8740, 1673710, 1673710, 513828970, 256914485, 631290272542, 3156451362710, 15513958447719650, 12411166758175720, 305013731457236950790, 305013731457236950790, 119935974414957427604889850, 3156209853025195463286575
Offset: 0

Views

Author

Eric W. Weisstein, Jun 08 2004

Keywords

Examples

			1, 1/2, 3/10, 1/5, 33/230, 5/46, 75/874, 611/8740, 97653/1673710, ...
		

Crossrefs

Cf. A095844 (numerators).

Programs

  • Maple
    seq(denom(1/(n+1)-sum(binomial(n,2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/(3*2^(2*k-1)-1)/(n-2*k+1),k = 1 .. floor(1/2*n))),n=1..17); # Emeric Deutsch, Feb 22 2005
  • Mathematica
    a[n_] := Denominator[1/(n + 1) - Sum[(Binomial[n, 2*k]*Floor[2^(2*k - 1) - 1]*BernoulliB[2*k])/Floor[(3*2^(2*k - 1) - 1)*(-2*k + n + 1)], {k, 1, Floor[n/2]}]]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Oct 23 2012, after Emeric Deutsch *)
    f[0] = 1; f[1] = 1/2; f[n_] := f[n] = (1/(3*2^n - 2))*(2 + Sum[Binomial[n, k]*f[k], {k, 1, n - 1}]); Denominator[Array[f, 20, 0]] (* Amiram Eldar, Jan 26 2024 *)

Formula

The integral, a rational number, is given by J(n) = 1/(n+1) - Sum_{k = 1..floor(n/2)} binomial(n,2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/((3*2^(2*k-1)-1)*(n-2*k+1)). - Emeric Deutsch, Feb 22 2005
Note that the Cantor function C(x) satisfies C(x) = C(3*x)/2 for x in [0,1/3], 1/2 for x in [1/3,2/3] and (1+C(3*x-2))/2 for x in [2/3,1]. Integrating both sides yields J(n) = (1 + Sum_{k=0..n-1} binomial(n,k)*J(k))/(3*2^n - 2) with J(0) = 1, where J(n) := Integral_{x=0..1} (C(x))^n dx. - Jianing Song, Nov 19 2023

A159009 Numerator of the integral of x^n times the Cantor function, from 0 to 1.

Original entry on oeis.org

1, 5, 11, 233, 97, 36377, 10637, 8885119, 18040327, 107868664309, 19821442673, 2657527033463249, 412093696402361, 28353905269136197727, 57058882710461852501, 30872757660805358101602571
Offset: 0

Views

Author

Simon Tatham (anakin(AT)pobox.com), Apr 02 2009

Keywords

Examples

			I(0) is obviously 1/2 by symmetry.
		

Crossrefs

A095844/A095845 give the integrals of powers of the Cantor function itself.
A159010 gives the corresponding denominators. [From Simon Tatham (anakin(AT)pobox.com), Apr 02 2009]

Programs

  • Maple
    for n from 0 to 20 do CI[n] := 1/(2*(n+1)) + 1/(2*(3^(n+1)-1)) * add(binomial(n,i)*2^(n-i)*CI[i],i=0..n-1); end do;

Formula

I(n) = 1/(2*(n+1)) + 1/(2*3^(n+1)-1) * sum_{i=0}{n-1} (n choose i) 2^(n-i) I(i)

A159010 Denominator of the integral of x^n times the Cantor function, from 0 to 1.

Original entry on oeis.org

2, 16, 48, 1280, 640, 279552, 93184, 87326720, 196485120, 1289117040640, 257823408128, 37368456004239360, 6228076000706560, 458287510968422367232, 982044666360905072640, 563650690404417328113516544
Offset: 0

Views

Author

Simon Tatham (anakin(AT)pobox.com), Apr 02 2009

Keywords

Examples

			I(0) is obviously 1/2 by symmetry.
		

Crossrefs

A159009 gives the corresponding numerators. A095844/A095845 give the integrals of powers of the Cantor function itself.

Formula

I(n) = 1/(2*(n+1)) + 1/(2*3^(n+1)-1) * sum_{i=0}{n-1} (n choose i) 2^(n-i) I(i)

A113223 Decimal expansion of Integral_{t=0..1} F(t)^F(t) dt, where F(t) is the Cantor function.

Original entry on oeis.org

7, 5, 0, 3, 8, 7, 0, 8, 2, 1, 6, 4, 1, 9, 8, 5, 1, 4, 7, 9, 5, 3, 1, 9, 7, 3, 6, 8, 0, 9, 3, 2, 9, 3, 3, 6, 9, 8, 6, 8, 1, 0, 3, 0, 2, 1, 0, 9, 4, 4, 4, 7, 7, 9, 8, 1, 8, 2, 2, 9, 6, 1, 1, 7, 1, 1, 9, 6, 5, 8, 3, 2, 4, 2, 5, 8, 7, 0, 4, 6, 9, 9, 8, 8, 4, 4, 8, 5, 6, 6, 6, 8, 9, 4, 2, 6, 4, 9, 8, 9, 7, 1
Offset: 0

Views

Author

Eric W. Weisstein, Oct 18 2005

Keywords

Examples

			0.750387082164198514795...
		

Crossrefs

A369501 Decimal expansion of the integral of the reciprocal of the Cantor function.

Original entry on oeis.org

3, 3, 6, 4, 6, 5, 0, 7, 2, 8, 1, 0, 0, 9, 2, 5, 1, 6, 0, 8, 3, 8, 9, 3, 4, 9, 6, 2, 8, 9
Offset: 1

Views

Author

Amiram Eldar, Jan 25 2024

Keywords

Examples

			3.36465072810092516083893496289...
		

Crossrefs

Formula

Equals Integral_{x=0..1} (1/c(x)) dx, where c(x) is the Cantor function.
Equals Sum_{k>=0} Integral_{x=0..1} c(x)^k dx = Sum_{k>=0} A095844(k)/A095845(k) (Javier Duoandikoetx, in "Cantor's Singular Moments", 1999).
Equals -1/3 + (2/3) * Sum_{k>=1} (2/3)^k * H(2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Prodinger, 2000).
Showing 1-6 of 6 results.