A095874 a(n) = k if n = A000961(k) (powers of primes), a(n) = 0 if n is not in A000961.
1, 2, 3, 4, 5, 0, 6, 7, 8, 0, 9, 0, 10, 0, 0, 11, 12, 0, 13, 0, 0, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 19, 0, 0, 0, 0, 20, 0, 0, 0, 21, 0, 22, 0, 0, 0, 23, 0, 24, 0, 0, 0, 25, 0, 0, 0, 0, 0, 26, 0, 27, 0, 0, 28, 0, 0, 29, 0, 0, 0, 30, 0, 31, 0, 0, 0, 0, 0, 32, 0, 33, 0, 34, 0, 0, 0, 0, 0, 35, 0
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a095874 n | y == n = length xs + 1 | otherwise = 0 where (xs, y:ys) = span (< n) a000961_list -- Reinhard Zumkeller, Feb 16 2012, Jun 26 2011
-
Mathematica
Join[{1},Module[{k=2},Table[If[PrimePowerQ[n],k;k++,0],{n,2,100}]]] (* Harvey P. Dale, Aug 15 2020 *)
-
PARI
a(n)=if(isprimepower(n), sum(i=1,logint(n,2), primepi(sqrtnint(n,i)))+1, n==1) \\ Charles R Greathouse IV, Apr 29 2015
-
PARI
{M95874=Map(); A095874(n,k)=if(mapisdefined(M95874,n,&k),k, isprimepower(n), mapput(M95874,n, k=sum(i=1,exponent(n), primepi(sqrtnint(n,i)))+1); k,n==1)} \\ Variant with memoization, possibly useful to compute A097621, A344826 and related. One may omit "isprimepower(n)," (possibly requiring factorization) and ",n==1" if n is known to be a power of a prime, i.e., to get a left inverse for A000961. - M. F. Hasler, Jun 15 2021
-
Python
from sympy import primepi, integer_nthroot, primefactors def A095874(n): return 1+int(primepi(n)+sum(primepi(integer_nthroot(n,k)[0]) for k in range(2,n.bit_length()))) if n==1 or len(primefactors(n))==1 else 0 # Chai Wah Wu, Jan 19 2025
Formula
a(n) = Sum_{1 <= k <= n} A010055(k); [corrected by M. F. Hasler, Jun 15 2021]
Extensions
Edited by M. F. Hasler, Jun 15 2021
Comments