cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095883 Let F(x) be the function such that F(F(x)) = arcsin(x), then F(x) = Sum_{n>=0} a(n)/2^n*x^(2n+1)/(2n+1)!.

Original entry on oeis.org

1, 1, 13, 501, 38617, 4945385, 944469221, 250727790173, 88106527550129, 39555449833828817, 22093952731139969213, 15041143328788464370373, 12273562321018687866908553, 11833097802606125967312406457
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2004

Keywords

Comments

It appears that, if arcsin(x) is changed to arcsinh(x) in the definition, the sequence obtained is the same except alternating in sign: 1, -1, 13, -501, ... - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Jul 16 2009
a(35) is negative. - Vaclav Kotesovec, Jan 06 2023

Examples

			F(x) = x + (1/2)*x^3/3! + (13/2^2)*x^5/5! + (501/2^3)*x^7/7! + (38617/2^4)*x^9/9! + ...
Special values:
F(x)=Pi/6 at x=F(1/2) = 0.51137532057552418592144885355...
F(x)=Pi/4 at x=F(sqrt(2)/2) = 0.74287348600976...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A, B, F}, F = ArcSin[x] + O[x]^(2n+3); A = F; For[i = 0, i <= n, i++, B[x_] = InverseSeries[A, x] // Normal; A = (A + B[F])/2]; 2^n* (2n+1)!*SeriesCoefficient[A, {x, 0, 2n+1}]];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Aug 16 2022, after PARI code *)
  • PARI
    {a(n)=local(A,B,F);F=asin(x+x*O(x^(2*n+1)));A=F; for(i=0,n,B=serreverse(A);A=(A+subst(B,x,F))/2);2^n*(2*n+1)!*polcoeff(A,2 *n+1,x)}

Formula

a(n)=T(2*n+1,1)*2^n*(2*n+1)!, T(n,m)=if n=m then 1 else 1/2(Co(n,m)-sum(i=m+1..n-1, T(n,i)*T(i,m))), Co(n,m)=T121408(n,m)=(m!*(sum(k=0..n-m, (-1)^((k)/2)*(sum(i=0..k, (2^i*stirling1(m+i,m)* binomial(m+k-1,m+i-1))/(m+i)!))*binomial((n-2)/2,(n-m-k)/2)))*((-1)^(n-m)+1))/2. - Vladimir Kruchinin, Nov 11 2011