cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095922 Dimension of invariants of n-th tensor power of 5-dimensional irreducible representation of B_2.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 15, 15, 105, 190, 945, 2410, 10263, 31890, 127699, 444458, 1751685, 6518736, 25807445, 100152288, 401449271, 1602902055, 6519160851, 26580508625, 109656966853, 454524861846, 1899821492925, 7982263725826, 33757439931675
Offset: 0

Views

Author

Alec Mihailovs (alec(AT)mihailovs.com), Jul 11 2004

Keywords

Comments

The analogous sequence for G_2 is A059710.

Examples

			a(2)=1 because SO(5) has unique (up to multiplication by a constant) invariant in V ⊗ V - the quadratic form x^2+y^2+z^2+u^2+v^2.
		

References

  • Alec Mihailovs, A Combinatorial Approach to Representations of Lie Groups and Algebras, Springer-Verlag New York (2004).

Crossrefs

Programs

  • Maple
    ca:=n->binomial(n+n,n)/(n+1); a:=n->add(ca(i)*ca(i+1)*binomial(n,2*i),i=0..floor(n/2))- add(ca(i)^2*binomial(n,2*i-1),i=0..floor((n+1)/2)); seq(a(n),n=0..40);
    A095922:=rsolve({(n+3)*(n+4)*A(n)=3*(n-1)*(n+2)*A(n-1)+(n-1)*(13*n+4)*A(n-2)-15*(n-1)*(n-2)*A(n-3),A(0)=1,A(1)=0,A(2)=1},A(n),makeproc);
  • Mathematica
    t = {0, 1, 0}; Do[AppendTo[ t, (3 (n - 1) (n + 2) t[[n - 1]] + (n - 1) (13 n + 4) t[[n - 2]] - 15 (n - 1) (n - 2) t[[n - 3]])/((n + 3) (n + 4))], {n, 4, 25}]; t = Join[{1}, t] (* T. D. Noe, Apr 11 2014 *)
    a[n_] := -n*HypergeometricPFQ[{3/2, 1/2 - n/2, 1 - n/2}, {3, 3}, 16] + HypergeometricPFQ[{3/2, 1/2 - n/2, -n/2}, {2, 3}, 16]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 03 2016 *)

Formula

a(n) =sum(A000108(i)*A000108(i+1)*binomial(n, 2*i), i=0..floor(n/2)) - sum(A000108(i)^2*binomial(n, 2*i-1), i=0..floor((n+1)/2)); exponential generating function = exp(t)*b(t) where b(t) is the exponential generating function of the sequence B(n) = (-1)^n*A000108(floor((n+1)/2))*A000108(floor(n/2+1)).
a(0)=1, a(1)=0, a(2)=1 and (n+3)(n+4)a(n)=3(n-1)(n+2)a(n-1)+(n-1)(13n+4)a(n-2)-15(n-1)(n-2)a(n-3) for n>2.
a(n) ~ 3 * 5^(n+5) / (128*Pi*n^5). - Vaclav Kotesovec, Oct 03 2016